首页|LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络

LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络

扫码查看
提出一种轻量级脑肿瘤全自动分割网络,即轻量级残差注意力增强网络(LRAE-Unet)。首先采用轻量级残差模块解决网络层数增加时出现的梯度消失和网络退化问题;其次采用轻量级自注意力模块抑制输入图像中的不相关区域,同时突出特定局部区域的显著特征;最后通过增强视野平均池化模块减少特征图的空间,节省计算资源,控制网络过拟合现象。在BraTS 2019数据集的测试结果显示LRAE-Unet在完整肿瘤、肿瘤核心与增强肿瘤区域的Dice相似系数为91。24%、88。64%与88。32%,证明使用LRAE-Unet进行脑瘤分割具有可行性与有效性。
LRAE-Unet:a lightweight network for fully automatic segmentation of brain tumor from MRI
A lightweight residual attention enhanced Unet(LRAE-Unet)is designed for the fully automatic brain tumor segmentation.LRAE-Unet uses lightweight residual module to solve the problems of gradient disappearance and network degradation when the network layers increases,lightweight self-attention module to suppress the irrelevant areas and highlight the significant features of specific local areas,and enhanced average pooling module with a larger field of perception to reduce the space of feature map,save computing resources and avoid over-fitting.The experiment on BraTS 2019 dataset shows that the proposed method has a Dice similarity coefficient of 91.24%,88.64%and 88.32%in the segmentations of the whole tumor,tumor core and enhanced tumor,which proves its feasibility and effectiveness for brain tumor segmentation.

brain tumorLRAE-Unetlightweight residual modulelightweight self-attention moduleaverage pooling module

林嘉豪、王瑜、肖洪兵、孙梅

展开 >

北京工商大学人工智能学院,北京 100048

脑肿瘤 LRAE-Unet 轻量级残差模块 轻量级自注意力模块 平均池化模块

北京市自然科学基金-北京市教委科技重点项目

KZ202110011015

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(1)
  • 28