中国医学物理学杂志2024,Vol.41Issue(2) :191-197.DOI:10.3969/j.issn.1005-202X.2024.02.011

采用融合ResNet和Transformer的U-Net进行疟疾感染红细胞分割

Segmentation of malaria-infected erythrocytes using U-Net incorporating Transformer and ResNet

刘潇霜 张伟
中国医学物理学杂志2024,Vol.41Issue(2) :191-197.DOI:10.3969/j.issn.1005-202X.2024.02.011

采用融合ResNet和Transformer的U-Net进行疟疾感染红细胞分割

Segmentation of malaria-infected erythrocytes using U-Net incorporating Transformer and ResNet

刘潇霜 1张伟1
扫码查看

作者信息

  • 1. 甘肃中医药大学信息工程学院,甘肃兰州 730000
  • 折叠

摘要

针对疟疾感染红细胞图像分割模型分割性能不高的问题,提出一种改进的U-Net网络模型,融合ResNet和Transformer.首先编码器部分使用ResNet,加深特征提取网络,以提取更深层次的特征;然后将ResNet输出传入Transformer模块进行目标区域特征的加强;最后通过解码器模块进行特征融合并输出结果.在疟疾显微图像数据集上,本文方法的Dice相似系数、平均交并比、类别平均像素准确率均优于U-Net网络,分别达到了87.40%、76.85%、85.28%.本文方法可以提高疟疾感染红细胞图像的分割精度,为疟疾诊断提供更有效和准确的解决方案.

Abstract

A novel U-Net network model which integrates ResNet and Transformer is proposed to address the problem of poor malaria-in fected erythrocyte performance of the existing models.ResNet is used in the encoder to deepen the feature extraction network for extracting deeper features,and the ResNet output is inputted into Transformer module for the feature enhancement in the target area,and finally the decoder module is used to perform feature fusion and output the results.The experiment on the malaria microscopy image dataset shows that the proposed method outperforms U-Net in Dice similarity coefficient,mean intersection over union,and mean pixel accuracy,reaching 87.40%,76.85%,and 85.28%,respectively.The proposed method can improve the accuracy of malaria-infected erythrocyte segmentation and provide a more effective and accurate solution for malaria diagnosis.

关键词

疟疾/U-Net/Transformer/语义分割

Key words

malaria/U-Net/Transformer/semantic segmentation

引用本文复制引用

基金项目

甘肃省教育厅创新基金(2022B-113)

出版年

2024
中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
参考文献量27
段落导航相关论文