中国医学物理学杂志2024,Vol.41Issue(2) :233-240.DOI:10.3969/j.issn.1005-202X.2024.02.017

基于遗传算法优化C-LSTM模型的心律失常分类方法

Arrhythmia classification method based on genetic algorithm optimization of C-LSTM model

王巍 丁辉 夏旭 吴浩 张迎 郭家成
中国医学物理学杂志2024,Vol.41Issue(2) :233-240.DOI:10.3969/j.issn.1005-202X.2024.02.017

基于遗传算法优化C-LSTM模型的心律失常分类方法

Arrhythmia classification method based on genetic algorithm optimization of C-LSTM model

王巍 1丁辉 1夏旭 1吴浩 1张迎 1郭家成1
扫码查看

作者信息

  • 1. 重庆邮电大学光电工程学院,重庆 400065
  • 折叠

摘要

结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置.利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证.经过测试,本文提出的GC-LSTM模型在分类准确率(99.37%)、灵敏度(95.62%)、精确度(95.17%)、F1值(95.39%)上相较于手动搭建模型均有所提升,且与现有主流方法相比亦具备一定优势.实验结果表明该方法在避免大量实验调参的同时取得较好的分类性能.

Abstract

A GC-LSTM model is proposed based on the characteristics of global optimization of genetic algorithm.The model automatically and iteratively searches the optimal hyper-parameter configuration of the C-LSTM model through the genetic algorithm of a specific genetic strategy,and it is configured using the genetic iteration results and validated on the MIT-BIH arrhythmia database according to the classification criteria of the Association for the Advancement of Medical Instrumentation.The testing shows that the classification accuracy,sensitivity,accuracy and F1 value of GC-LSTM model are 99.37%,95.62%,95.17%and 95.39%,respectively,higher than those of the manually established model,and it is also advantageous over the existing mainstream methods.Experimental results demonstrate that the proposed method can achieve better classification performance while avoiding a large number of experimental parameters.

关键词

心律失常分类/遗传算法/GC-LSTM模型/超参数

Key words

arrhythmia classification/genetic algorithm/GC-LSTM model/hyper-parameter

引用本文复制引用

基金项目

重庆市科技局产业化项目(CSTC2018JSZX-CYZ-TZX0211)

重庆市科技局产业化项目(CSTC2018JSZX-CYZTZX0048)

出版年

2024
中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
参考文献量24
段落导航相关论文