首页|基于微分熵及卷积神经网络的脑电运动想象分类识别

基于微分熵及卷积神经网络的脑电运动想象分类识别

扫码查看
针对基于运动想象的脑电信号多分类识别准确率不高的问题,提出一种基于微分熵及卷积神经网络对运动想象四分类的识别方法。首先,将脑电信号通过滤波器提取为Alpha、Beta、Theta、Gamma 4个频段,分别计算各个频段的微分熵特征,并按照脑电极空间特征对数据结构进行重构为三维脑电信号特征立方体。最后,将其输入卷积神经网络进行四分类,该方法基于BCI Competition IV-2a公开数据集,准确率达到95。88%,并在试验室建立四分类运动想象数据集进行相同的处理,准确率达到94。50%。测试结果表明本文所提方法具有更好的识别效果。
Motor imagery EEG classification and recognition based on differential entropy and convolutional neural network
To address the problem of low accuracy in multi-classification recognition of motor imagery electroencephalogram(EEG)signals,a recognition method is proposed based on differential entropy and convolutional neural network for 4-class classification of motor imagery.EEG signals are extracted into 4 frequency bands(Alpha,Beta,Theta,and Gamma)through the filter,followed by the computation of differential entropy for each frequency band.According to the spatial characteristics of brain electrodes,the data structure is reconstructed into three-dimensional EEG signal feature cube which is input into convolutional neural network for 4-class classification.The method achieves an accuracy of 95.88%on the BCI Competition IV-2a public dataset.Additionally,a 4-class classification motor imagery dataset is established in the laboratory for the same processing,and an accuracy of 94.50%is obtained.The test results demonstrate that the proposed method exhibits superior recognition performance.

motor imagery EEG signalconvolutional neural networkdifferential entropyfeature extraction

廉小亲、蔡沫豪、高超、罗志宏、吴叶兰

展开 >

北京工商大学人工智能学院,北京 100048

北京工商大学中国轻工业工业互联网与大数据重点实验室,北京 100048

运动想象脑电信号 卷积神经网络 微分熵 特征提取

北京市自然科学基金

6214034

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(3)
  • 27