首页|自适应特征融合和条件随机场的乳腺病理图像诊断算法

自适应特征融合和条件随机场的乳腺病理图像诊断算法

扫码查看
肿瘤病理学分析是常见的癌症诊断方法之一。基于深度学习的病理检测方法取得了良好性能,然而针对组织切片的处理方法往往会忽略病理组织空间相关性,为了更加准确地获取乳腺癌分类结果和恶性肿瘤位置信息,提出嵌入自适应特征融合模块和均值条件随机场的Transformer框架,利用反向传播算法端到端地训练整个框架。自适应特征融合模块采用可学习参数将改进的自注意力和多感受野卷积模块自适应结合,获取多尺度语义特征,从全局和局部的角度增强模型特征提取能力;提出均值条件随机场与主干网络结合,整合组织切片间的空间相关性,获取病理组织间的形态学信息。实验结果表明:所提方法在切片级图像上准确率高达95。51%,在全切片扫描图像的AUC、FROC分别为0。9745、0。8102,有较好的可行性,提高了病理图像分类临床诊断准确率。
Breast pathological image diagnosis algorithm incorporating adaptive feature fusion and conditional random field
Pathological analysis is one of the common methods for cancer diagnosis.Although pathological examination based on deep learning exhibits good performance,the processing method for tissue slices tends to ignore the spatial correlation of pathological tissues.In order to obtain breast cancer classification results and malignant tumor location more accurately,a Transformer framework embedded with adaptive feature fusion module and mean value conditional random field is proposed,and the whole framework is trained end-to-end using back propagation algorithm.The adaptive feature fusion module uses learnable parameters to combine the improved self-attention and multi receptive field convolution module adaptively for obtaining multi-scale semantic features and enhancing the model feature extraction capability from both global and local perspectives.The proposed mean value conditional random field is combined with the backbone network to integrate the spatial correlation between tissue slices and obtain morphological information between pathological tissues.Experimental results show that the proposed method yields 95.51%accuracy on slice images,and achieves 0.9745 AUC and 0.8102 FROC on whole-slice images,demonstrating its feasibility and higher diagnostic accuracy for pathological image classification.

breastimage processingadaptive feature fusionconditional random fieldpathological slice

陈杰、陈金令、陆浩、陈百合、唐卓葳

展开 >

西南石油大学电气信息学院,四川成都 610500

绵阳中心医院/电子科技大学医学院附属绵阳医院,四川绵阳 621000

乳腺 图像处理 自适应特征融合 条件随机场 病理切片

四川省重点研发计划(科技重大专项)四川省卫生健康委临床研究项目南充市市校科技战略合作专项

2022YFS002023LCYJ02022SX-QT0292

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(4)
  • 22