首页|基于深度学习的桡动脉脉搏波重构方法

基于深度学习的桡动脉脉搏波重构方法

扫码查看
目的:针对从指端脉搏波重构出桡动脉脉搏波的难题,提出一种基于深度学习的重构方法。方法:使用四通道数据采集系统PowerLab分别无创采集指端脉搏波和桡动脉脉搏波,对脉搏波信号噪声源进行分析,利用去基线算法、小波变换去噪算法、归一化预处理算法,得到稳定的信号波形。设计变分自编码器(VAE)网络模型结构参数,利用十折交叉验证法对744例受试者数据进行训练,建立桡动脉脉搏波预测模型。设置学习率、随机失活、正则化项共3项超参数,对VAE网络模型进行优化。结果:186例受试者桡动脉脉搏波重构和同步检测结果表明:低阻型和高阻型指端脉搏波经VAE网络模型建模后5%K差、20%K差、K差总方差、FIT分别为49。10%、96。70%、89。74和75。80%;低阻型和高阻型指端脉搏波经VAE网络优化模型建模后5%K差、20%K差、K差总方差、FIT分别为48。50%、94。50%、73。74和66。30%。结论:VAE网络模型建模及其优化方法可用于桡动脉脉搏波重构,重构精度较高,并具有较强的鲁棒性和泛化能力。
Reconstruction method for radial artery pulse wave based on deep learning
Objective To propose a reconstruction method based on deep learning for addressing the challenge of reconstructing radial artery pulse wave from fingertip pulse wave.Methods A four-channel data acquisition system PowerLab was used to non-invasively acquire finger pulse waves and radial artery pulse waves.The noise source in the pulse wave signals were analyzed,and the stable signal waveforms were obtained after baseline removal,wavelet transform denoising,and normalization preprocessing.The structure and parameters of the variational auto-encoder(VAE)network model were designed.The model was trained using 10-fold cross-validation on data from 744 subjects to establish a prediction model for radial artery pulse waves;and the VAE network model was optimized by adjusting hyperparameter settings of learning rate,dropout,and regularization term.Results The results from the reconstruction and synchronous detection of radial artery pulse waves in 186 subjects showed that for reconstructing radial artery pulse waves from low-and high-resistance fingertip pulse waves,the 5%K difference,20%K difference,total variance of K difference,and FIT were 49.10%,96.70%,89.74,and 75.80%when using VAE network model,and those were 48.50%,94.50%,73.74,and 66.30%when using VAE optimization model.Conclusion The VAE network model and its optimization method can be used for radial artery pulse wave reconstruction,with high reconstruction accuracy,strong robustness and generalization ability.

deep learningpulse wavewave reconstructionmodel optimizationvariational auto-encoder

艾海明、张清利、宋现涛、王野、张松、杨益民

展开 >

北京开放大学科学技术学院,北京 100081

首都医科大学附属北京安贞医院心内科,北京 100029

北京工业大学环境与生命学部,北京 100124

深度学习 脉搏波 波形重构 模型优化 变分自编码器

国家重点研发计划科技部科技创新2030-"新一代人工智能"重大项目比尔及梅琳达·盖茨基金北京市教委科技项目

2019YFC01197002020AAA0105800OPP1148910KM201951160001

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(4)
  • 32