中国医学物理学杂志2024,Vol.41Issue(6) :769-775.DOI:10.3969/j.issn.1005-202X.2024.06.016

基于PPG信号的极简特征回归树血压估计模型设计

Regression tree model for blood pressure estimation using the minimalist characteristics of photoplethysmography signal

李勋 刘丽荣 李浩 杨怜琳 王志敏 邹梅
中国医学物理学杂志2024,Vol.41Issue(6) :769-775.DOI:10.3969/j.issn.1005-202X.2024.06.016

基于PPG信号的极简特征回归树血压估计模型设计

Regression tree model for blood pressure estimation using the minimalist characteristics of photoplethysmography signal

李勋 1刘丽荣 1李浩 2杨怜琳 3王志敏 3邹梅1
扫码查看

作者信息

  • 1. 昆明学院物理科学与技术学院,云南昆明 650214
  • 2. 昆明学院医学院,云南昆明 650214
  • 3. 昆明市延安医院,云南昆明 650051
  • 折叠

摘要

目的:提出一种基于光电容积脉搏波(PPG)的极简特征回归树血压估计模型.方法:从单路PPG信号中提取15个特征参数,利用斯皮尔曼相关系数筛选与血压相关性最高的4个参数,构建极简特征回归树血压模型.结果:极简特征回归树血压模型收缩压和舒张压的估计误差分别达到(-0.02±3.63)mmHg和(-0.04±2.10)mmHg.结论:提出的极简特征回归树血压模型结构简洁、准确率较高,这一发现对于在可穿戴设备中使用单路PPG信号进行血压估计具有重要意义.

Abstract

Objective To propose a regression tree model for the estimation of blood pressure using the minimalist characteristics of photoplethysmography(PPG)signals.Methods Fifteen characteristic parameters were extracted from the PPG signals,and the 4 parameters with the highest correlations with blood pressure were screened using the Spearman correlation coefficient to construct a regression tree model for blood pressure estimation using the minimalist characteristics.Results The estimation errors of systolic and diastolic blood pressures in the constructed model were(-0.02±3.63)mmHg and(-0.04±2.10)mmHg,respectively.Conclusion The proposed regression tree model has a simple structure and high accuracy,which is of great significance for using a single-channel PPG signal for blood pressure estimation in wearable devices.

关键词

光电容积脉搏波/极简特征/斯皮尔曼相关系数/血压估计模型

Key words

photoplethysmography/minimalist characteristics/Spearman correlation coefficient/blood pressure estimation model

引用本文复制引用

基金项目

昆明学院引进人才科研项目(XJ20210003)

云南省科技厅基础研究项目(ZX20240033)

出版年

2024
中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
段落导航相关论文