首页|基于PPG信号的极简特征回归树血压估计模型设计

基于PPG信号的极简特征回归树血压估计模型设计

扫码查看
目的:提出一种基于光电容积脉搏波(PPG)的极简特征回归树血压估计模型。方法:从单路PPG信号中提取15个特征参数,利用斯皮尔曼相关系数筛选与血压相关性最高的4个参数,构建极简特征回归树血压模型。结果:极简特征回归树血压模型收缩压和舒张压的估计误差分别达到(-0。02±3。63)mmHg和(-0。04±2。10)mmHg。结论:提出的极简特征回归树血压模型结构简洁、准确率较高,这一发现对于在可穿戴设备中使用单路PPG信号进行血压估计具有重要意义。
Regression tree model for blood pressure estimation using the minimalist characteristics of photoplethysmography signal
Objective To propose a regression tree model for the estimation of blood pressure using the minimalist characteristics of photoplethysmography(PPG)signals.Methods Fifteen characteristic parameters were extracted from the PPG signals,and the 4 parameters with the highest correlations with blood pressure were screened using the Spearman correlation coefficient to construct a regression tree model for blood pressure estimation using the minimalist characteristics.Results The estimation errors of systolic and diastolic blood pressures in the constructed model were(-0.02±3.63)mmHg and(-0.04±2.10)mmHg,respectively.Conclusion The proposed regression tree model has a simple structure and high accuracy,which is of great significance for using a single-channel PPG signal for blood pressure estimation in wearable devices.

photoplethysmographyminimalist characteristicsSpearman correlation coefficientblood pressure estimation model

李勋、刘丽荣、李浩、杨怜琳、王志敏、邹梅

展开 >

昆明学院物理科学与技术学院,云南昆明 650214

昆明学院医学院,云南昆明 650214

昆明市延安医院,云南昆明 650051

光电容积脉搏波 极简特征 斯皮尔曼相关系数 血压估计模型

昆明学院引进人才科研项目云南省科技厅基础研究项目

XJ20210003ZX20240033

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(6)