首页|基于弱监督学习的双分支结直肠病理图像腺体分割

基于弱监督学习的双分支结直肠病理图像腺体分割

扫码查看
现有弱监督分割方法难以获得结直肠病理图像的细粒度腺体特征,导致无法生成高质量伪标签的问题,影响腺体分割的效果。为了解决上述问题,提出一种基于弱监督学习的双分支结直肠病理图像腺体分割方法。首先,将patch级结直肠病理图像输入到第一个分支网络中,通过特征交互模块和亲和度注意力融合模块实现patch级图像的局部和全局特征的交互和融合,并获得细粒度腺体特征。然后,将图像级结直肠病理图像输入到第二个分支网络中,利用局部类激活注意力模块定位腺体位置,并获得粗粒度类激活图。最后,通过细粒度腺体特征和粗粒度类激活图,得到高质量伪标签,并在分割网络中经过跨尺度连接空间感知模块,实现腺体分割。实验结果表明,将所提方法在GlaS和CRAG两个结直肠病理图像数据集中进行实验,与其他分割方法相比取得较好的分割效果,验证所提方法的有效性。
Gland segmentation in colorectal pathological image using dual-branch network based on weakly supervised learning
To address the issue that the existing weakly supervised segmentation methods have difficulties in obtaining fine-grained glandular features from colorectal pathological images,leading to the inability to generate high-quality pseudo-labels and compromising the gland segmentation performance,a dual-branch network based on weakly supervised learning is proposed for gland segmentation in colorectal pathological image.The patch-level colorectal pathological images are input into the first branch network,where the interaction and fusion of local and global features of patch-level images are achieved through the feature interaction module and affinity attention fusion module,and fine-grained glandular features are obtained.Subsequently,image-level colorectal pathological images are input into the second branch network,where the gland locations are located using the partial class activation attention module,and coarse-grained class activation maps are obtained.Finally,high-quality pseudo-labels are derived from the fine-grained glandular features and coarse-grained class activation maps,and gland segmentation is realized in the segmentation network through the cross-scale connected spatial perception module.The tests on two colorectal pathological image datasets(GlaS and CRAG)reveal that the proposed method is superior to other segmentation methods in segmentation performance,confirming its effectiveness.

weakly supervised learningcolorectal pathological imagegland segmentationpseudo-labelclass activation map

李子成、贾伟、赵雪芬、高宏娟

展开 >

宁夏大学信息工程学院,宁夏银川 750021

宁夏"东数西算"人工智能与信息安全重点实验室,宁夏银川 750021

弱监督学习 结直肠病理图像 腺体分割 伪标签 类激活图

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(9)