首页|基于全尺度通道特征聚合编解码网络的肺结节分割算法

基于全尺度通道特征聚合编解码网络的肺结节分割算法

扫码查看
针对不同性质下肺结节难以精准检测的难题,提出全尺度通道特征聚合编解码网络(FCFA-Net)去辅助经验丰富的医师进行诊断。本网络由SMC、全尺度特征聚合器、自相关特征增强器、通道特征层级提取解码器以及双项限制损失函数构成,用于充分提取CT图像中的浅层与深层特征,以达到分割大小各异、形状各异的肺结节病灶。本文方法FCFA-Net网络相较于UNet、UNet++和TransUnet方法精准率分别提升9。66%、7。84%、3。75%,召回率提升5。50%、2。96%、1。37%,均交并比提升11。35%、7。16%、4。18%,F1分数提升8。07%、5。87%、3。10%,且消融实验表明各个结构均发挥作用,在参数接受范围内达到最佳效果。
Lung nodule segmentation algorithm based on full-scale channel feature aggregation coding and decoding network
To address the difficulty in accurately detecting pulmonary nodules of different properties,a full-scale channel feature aggregation encoding and decoding network(FCFA-Net)is employed to assist experienced physicians in diagnosis.The network which consists of SMC,full-scale feature aggregator,autocorrelation feature enhancer,channel feature hierarchy extraction decoder and binomial constraint loss function can fully extract shallow and deep features from CT images for realizing the segmentation of pulmonary nodules of different sizes and shapes.Compared with UNet,UNet++and TransUnet,FCFA-Net increases the accuracy by 9.96%,7.84%and 3.75%,recall rate by 5.50%,2.96%and 1.37%,mean intersection over union by 11.35%,7.16%and 4.18%,F1 score by 8.07%,5.87%and 3.10%,respectively.Additionally,ablation experiment results demonstrate that each structure is effective and can achieve the best result within the acceptable parameter range.

lung nodule segmentationfull-scale skip connectionbinomial constraint loss functiondilated convolution

谢绍鹏、王明泉、耿宇杰、黄心玥、商然

展开 >

中北大学信息与通信工程学院,山西 太原 030051

肺结节分割 全尺度跳跃连接 双项限制损失函数 空洞卷积

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(12)