中国医学物理学杂志2024,Vol.41Issue(12) :1550-1557.DOI:10.3969/j.issn.1005-202X.2024.12.013

基于LSTM-Transformer的脑电情感分析

EEG emotion analysis based on LSTM-Transformer

王安琪 于超 陈胤玮 郗群
中国医学物理学杂志2024,Vol.41Issue(12) :1550-1557.DOI:10.3969/j.issn.1005-202X.2024.12.013

基于LSTM-Transformer的脑电情感分析

EEG emotion analysis based on LSTM-Transformer

王安琪 1于超 1陈胤玮 1郗群2
扫码查看

作者信息

  • 1. 甘肃省中医药大学信息工程学院,甘肃 兰州 730000
  • 2. 兰州大学第二医院信息中心,甘肃 兰州 730001
  • 折叠

摘要

针对传统情感识别方法在处理长期依赖关系时的不足,提出一种结合长短期记忆网络(LSTM)与Transformer模块的脑电情感分析模型,称为LTNet.该模型首先对数据进行预处理,然后将提取的特征输入至LTNet.LSTM模块和Transformer模块独立对输入的序列进行建模,分别从中提取出深层的局部特征和全局特征.通过采用加权融合策略来综合这些特征,最终利用Softmax函数对情绪进行四分类.实验结果显示,在DEAP数据集上进行的五折交叉验证中,LTNet的平均识别准确率达到96.56%,相比于传统机器学习算法和其他深度学习方法提高2.74%~21.31%.

Abstract

An electroencephalogram(EEG)emotion analysis model(LTNet)that combines long short-term memory(LSTM)and Transformer modules is proposed for addressing the shortcomings of traditional emotion recognition methods in dealing with long-term dependencies.After data preprocessing,the extracted features are input into LTNet.LSTM module and Transformer module model the input sequence independently,and from which deep local features and global features are extracted and then fused using a weighted fusion strategy.Finally,Softmax function is used to classify emotions into 4 categories.Experimental results show that LTNet has an average recognition accuracy of 96.56%in the 5-fold cross-validation on the DEAP dataset,which is 2.74%-21.31%higher than traditional machine learning algorithms and other deep learning methods.

关键词

脑电/情绪识别/深度学习/LSTM/Transformer

Key words

electroencephalogram/emotion recognition/deep learning/long short-term memory/Transformer

引用本文复制引用

出版年

2024
中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
段落导航相关论文