首页|联合应用二维、三维超微血管成像修正S-Detect分类良、恶性乳腺囊实性病变

联合应用二维、三维超微血管成像修正S-Detect分类良、恶性乳腺囊实性病变

扫码查看
目的 观察联合应用二维超微血管成像(2D-SMI)及三维超微血管成像(3D-SMI)修正S-Detect分类良、恶性乳腺囊实性病变结果的价值.方法 回顾性分析143例女性患者146个经病理诊断(良性78个、恶性68个)乳腺囊实性病变资料,记录基于二维超声表现的S-Detect分类结果,并根据2D-SMI和3D-SMI所示血供特征、血管构筑及血流动力学等特征加以修正;计算修正前、后S-Detect分类敏感度、特异度及准确率;以受试者工作特征(ROC)曲线及曲线下面积(AUC)评估其效能,以DeLong检验加以比较.结果 修正前S-Detect分类乳腺良、恶性囊实性病变的敏感度、特异度、准确率及 AUC 分别为 61.76%、58.97%、60.27%及 0.604,修正后分别为 92.65%、58.97%、74.66%及 0.758;修正后AUC高于修正前(P<0.05).结论 联合应用2D-SMI及3D-SMI评估乳腺囊实性病变有助于修正倾向良性的S-Detect分类结果.
Combination of two-dimensional and three-dimensional super microvascular imaging for correcting S-Detect classification of benign and malignant complex cystic and solid breast lesions
Objective To observe the value of two-dimensional and three-dimensional super microvascular imaging(2D-SMI and 3D-SMI)for correcting S-Detect classification of benign and malignant complex cystic and solid breast lesions.Methods Data of 146 complex cystic and solid breast lesions confirmed by pathology(78 benign and 68 malignant)in 143 female patients were retrospectively analyzed.S-Detect classification results based on 2D-ultrasound were recorded.Then characteristics of blood supply,vascular architecture and blood flow of lesions showed on 2D-SMI and 3D-SMI were used to correct S-Detect classification.The sensitivity,specificity and accuracy of S-Detect classification were calculated before and after 2D-SMI and 3D-SMI correction.The diagnostic efficacy was analyzed with receiver operating characteristic(ROC)curve,and the area under the curve(AUC)was calculated and compared using DeLong test.Results The sensitivity,specificity,accuracy and AUC of S-Detect classification of benign and malignant complex cystic and solid breast lesions was 61.76%,58.97%,60.27%and 0.604 before and 92.65%,58.97%,74.66%and 0.758 after 2D-SMI and 3D-SMI correction,respectively.AUC after 2D-SMI and 3D-SMI correction was higher than that before correction(P<0.05).Conclusion Evaluating complex cystic and solid breast lesions with combination of 2D-SMI and 3D-SMI was helpful for correcting towards benign S-Detect classification of complex cystic and solid breast lesions.

breast diseasesultrasonographyartificial intelligence

袁杰、汪成、笪应芬、吴林生

展开 >

上海交通大学医学院附属第九人民医院黄浦分院超声科,上海 200011

上海交通大学医学院附属第九人民医院黄浦分院乳腺外科,上海 200011

乳腺疾病 超声检查 人工智能

上海市黄浦区卫生健康系统科研项目(2022)

HLM202211

2024

中国医学影像技术
中国科学院声学研究所

中国医学影像技术

CSTPCD北大核心
影响因子:0.763
ISSN:1003-3289
年,卷(期):2024.40(4)
  • 20