首页|融合分区注意力UNet模型用于分割MRI中的膝关节软骨

融合分区注意力UNet模型用于分割MRI中的膝关节软骨

扫码查看
目的 构建融合分区注意力的UNet(PA-UNet)模型,观察其分割MRI中的膝关节软骨的价值.方法 对来源于Osteoarthritis Initiative-Zuse Institute Berlin数据集的膝关节MRI进行切片及预处理,以UNet为骨干网络构建基于分区注意力机制的PA-UNet模型,通过主、客观评价比较该模型与其他模型分割股骨软骨及胫骨软骨的效果;分别以基于 UNet、基于 SE(第 2~4 层)的 UNet(UNet+SE)、+UNet、++UNet、+++UNet、+UNet+、++UNet++及 PA-UNet模型的消融实验观察各模型分割膝关节软骨的效果.结果 PA-UNet可准确分割低难度、中等难度及困难样本中的股骨及胫骨软骨,其分割细小结构效果优于SegNet、UNet及DeepLabv3+模型;其分割股骨软骨及胫骨软骨的戴斯相似系数(DSC)及交并比均高于、而豪斯多夫距离均低于UNet、DeepLabv3+、SA-UNet、RA UNet及SegNet模型.以PA-UNet模型分割股骨软骨及胫骨软骨的DSC分别为88.97%及82.72%,均高于UNet、UNet+SE、+UNet、++UNet、+++UNet、+UNet+及++UNet++模型.结论 PA-UNet可完整分割MRI中的膝关节软骨,尤其对细小结构的分割效果良好.
UNet fusing patch attention for segmenting knee cartilage on MRI
Objective To construct a UNet fusing patch attention(PA-UNet)model,and to observe its value for segmenting knee cartilage on MRI.Methods Slice and preprocessing were performed on knee MRI selected from Osteoarthritis Initiative-Zuse Institute Berlin dataset.Taken UNet as the backbone network,a PA-UNet model was constructed based on patch attention mechanism.The effect of PA-UNet model and other models for segmenting both femoral cartilage and tibial cartilage were compared by subjective and objective evaluations.Ablation experiments based on UNet,UNet based on SE with layers 2-4(UNet+SE),+UNet,++UNet,+++UNet,+U-Net+,++U-Net++and PA-UNet models were performed to observe the effect of models for segmenting knee cartilage.Results PA-UNet could accurately segment femoral and tibial cartilage in all simple,medium and difficult samples,which had better segmenting effect on small structures than SegNet,UNet and DeepLabv3+models.The Dice similarity coefficient(DSC)and intersection over union of PA-UNet model for segmenting femoral and tibial cartilage were both higher,while Hausdorff distance of PA-UNet model was lower than those of UNet,DeepLabv3+,SA-UNet,RA UNet and SegNet models.DSC of PA-UNet model for segmenting femoral cartilage and tibial cartilage was 88.97%and 82.72%,respectively,both higher than those of UNet,UNet+SE,+UNet,++UNet,++UNet,+UNet+and++UNet++models.Conclusion PA-UNet could segment knee cartilage completely on MRI,especially for small structures.

knee jointcartilagedeep learningmagnetic resonance imagingattention mechanism

王翔、史操、袁正一

展开 >

青岛科技大学信息科学技术学院,山东青岛 266000

膝关节 软骨 深度学习 磁共振成像 注意力机制

2024

中国医学影像技术
中国科学院声学研究所

中国医学影像技术

CSTPCD北大核心
影响因子:0.763
ISSN:1003-3289
年,卷(期):2024.40(5)
  • 2