首页|深度学习超声智能模型评价左心室节段性室壁运动异常

深度学习超声智能模型评价左心室节段性室壁运动异常

扫码查看
目的 观察深度学习超声智能模型自动识别左心室(LV)节段性室壁运动异常(RWMA)的价值.方法 对205例冠心病患者前瞻性采集心尖两腔心(A2C)、三腔心(A3C)和四腔心切面(A4C)二维超声心动图,以5折交叉验证法构建评价LV局部收缩功能模型,自动评估是否存在RWMA;根据人工判读结果评价模型效能.结果205例中,83例共650个节段存在RWMA.LV心肌分割模型效能良好,其分割A2C、A3C及A4C切面LV心肌结果的平均戴斯相似系数分别为0.85、0.82及0.88.利用LV心肌分段模型可对A2C、A3C和A4C切面LV心肌进行准确分段.RWMA识别模型的平均曲线下面积(AUC)为0.843±0.071,敏感度为(64.19±14.85)%,特异度为(89.44±7.31)%,准确率为(85.22±4.37)%.结论 深度学习超声智能模型可自动评估LV局部收缩功能,进而快速、准确地辅助识别RWMA.
Deep learning echocardiographic intelligent model for evaluation on left ventricular regional wall motion abnormality
Objective To observe the value of deep learning echocardiographic intelligent model for evaluation on left ventricular(LV)regional wall motion abnormalities(RWMA).Methods Apical two-chamber,three-chamber and four-chamber views two-dimensional echocardiograms were obtained prospectively in 205 patients with coronary heart disease.The model for evaluating LV regional contractile function was constructed using a five-fold cross-validation method to automatically identify the presence of RWMA or not,and the performance of this model was assessed taken manual interpretation of RWMA as standards.Results Among 205 patients,RWMA was detected in totally 650 segments in 83 cases.LV myocardial segmentation model demonstrated good efficacy for delineation of LV myocardium.The average Dice similarity coefficient for LV myocardial segmentation results in the apical two-chamber,three-chamber and four-chamber views was 0.85,0.82 and 0.88,respectively.LV myocardial segmentation model accurately segmented LV myocardium in apical two-chamber,three-chamber and four-chamber views.The mean area under the curve(AUC)of RWMA identification model was 0.843±0.071,with sensitivity of(64.19±14.85)%,specificity of(89.44±7.31)%and accuracy of(85.22±4.37)%.Conclusion Deep learning echocardiographic intelligent model could be used to automatically evaluate LV regional contractile function,hence rapidly and accurately identifying RWMA.

ventricular function,leftsystolic functionechocardiographydeep learning

王永槐、董天心、马春燕

展开 >

中国医科大学附属第一医院心血管超声科,辽宁沈阳 110002

辽宁省影像医学临床医学研究中心,辽宁沈阳 110002

心室功能,左 收缩功能 超声心动描记术 深度学习

国家自然科学基金辽宁省自然科学基金计划项目沈阳市人民政府加快推进中国医科大学科技创新发展专项

U21A203872022-YGJC-6323-506-3-01-43

2024

中国医学影像技术
中国科学院声学研究所

中国医学影像技术

CSTPCD北大核心
影响因子:0.763
ISSN:1003-3289
年,卷(期):2024.40(8)