首页|分数阶微积分模型弥散加权成像判断宫颈癌病理类型及分化程度

分数阶微积分模型弥散加权成像判断宫颈癌病理类型及分化程度

扫码查看
目的 探讨分数阶微积分(FROC)模型弥散加权成像(DWI)用于判断宫颈癌(CCA)病理类型及分化程度的价值.方法 纳入74例CCA,根据病理类型分为鳞状细胞癌(SCC)组(n=54)与腺癌(ACA)组(n=20),同时根据分化程度分为低分化组(n=33)及中-高分化组(n=41).行常规MR和12个b值DWI检查,经软件分析得到FROC模型参数(D、p和μ值)及单指数模型的表观弥散系数(ADC).比较组间各参数,针对差异有统计学意义的参数绘制受试者工作特征曲线,计算曲线下面积(AUC),评估诊断效能.结果 SCC组与ACA组间ADC、D、β值差异均有统计学意义(P均<0.05),以D值鉴别CCA病理类型的AUC最高(0.726).低分化组与中高分化组间D、β、μ值及ADC差异均有统计学意义(P均<0.05),以D值的AUC最高(0.865).基于逻辑回归显著变量β及μ值构建的联合模型的AUC为0.926,高于任意单一参数(P均<0.05).结论 FROC模型DWI可用于判断CCA病理类型及分化程度.
Fractional order calculus model diffusion weighted imaging for evaluating pathological classification and differentiation degree of cervical cancer
Objective To explore the value of fractional order calculus(FROC)model diffusion weighted imaging(DWI)for evaluating pathological classification and differentiation degree of cervical cancer(CCA).Methods Totally 74 CCA patients were enrolled and divided into squamous cell carcinoma(SCC)group(n=54)and adenocarcinoma(ACA)group(n=20)based on pathological classification,also low differentiation group(n=33)and medium-high differentiation group(n=41)based on differentiation degree.Conventional MR examination and DWI with 12 b-values were performed,FROC model parameters(D,β,and p value)and the apparent diffusion coefficient(ADC)of mono-exponential model were obtained via software analysis.The parameters were compared between groups,and receiver operating characteristic curve of those being significantly different between groups were drawn,the area under the curves(AUC)were calculated to evaluate the diagnostic efficacy.Results Significant differences of ADC,D,and β values were found between SCC group and ACA group(all P<0.05),and D value had the highest AUC(0.726)for distinguishing pathological classification CCA.Meanwhile,significant differences of D,β,p values and ADC were observed between low differentiation group and medium-high differentiation group(all P<0.05),D value also had the highest AUC(0.865).AUC of the combined model constructed based on significant variables β and p values in logistic regression was 0.926,higher than that of each parameter alone(all P<0.05).Conclusion FROC model DWI could be used to evaluate pathological classification and differentiation degree of CCA.

uterine cervical neoplasmsmagnetic resonance imagingfractional order calculus

张锦超、孙宜楠、杨擎、陈明、徐望燕、刘孟潇、朱娟、汪飞

展开 >

安徽医科大学安庆医学中心(安庆市立医院)医学影像科,安徽安庆 246003

西门子医疗系统有限公司MR科研市场部,上海 200126

宫颈肿瘤 磁共振成像 分数阶微积分

2024

中国医学影像技术
中国科学院声学研究所

中国医学影像技术

CSTPCD北大核心
影响因子:0.763
ISSN:1003-3289
年,卷(期):2024.40(11)