首页|基于机器学习的二维流体VOF方法

基于机器学习的二维流体VOF方法

扫码查看
以网格顶点和网格中心的流体体积分数为输入,利用深度学习神经网络(DNN)进行两相界面的快速几何重构,改进了一种几何VOF方法——isoAdvector算法.在原始isoAdvector算法生成训练集并进行预处理的基础上,通过神经网络隐藏层中神经元个数和激活函数对预测结果的影响来确定适当的神经网络;并根据质量守恒修正神经网络预测结果,完成两相界面的几何重构.在OpenFOAM框架下,嵌入神经网络修正改进后的isoAdvector算法.二维溃坝数值模拟结果表明:改进算法与原始算法计算精度相当,计算效率有所提升.
A Machine Learning-based VOF Method for 2D Flowfield
The Deep Neural Network(DNN)is used to improve the Volume-of-Fluid(VOF)method in isoAdvector algorithm.Based on the Volume fraction in cell and at nodes,the two-phase interface can be reconstructed with high efficiency.The training set is generated and preprocessed by the original isoAdvector algorithm,which will reduce the difficulty of neural network training with high degree of accuracy.According to the volume conservation,the predicted data of the neural network are analytically corrected to complete the geometric reconstruction of the two-phase interface.The improved isoAdvector algorithm is used to simulate the 2D dam break by using OpenFOAM.The accuracy of the improved method is equivalent to the original one,and the computational efficiency is improved.

free surface capturegeometric VOFdeep neural networkisoAdvectorOpenFOAM

孟巍、梅桂林

展开 >

哈尔滨工程大学船舶工程学院,哈尔滨 150001

自由液面捕捉 几何VOF方法 深度神经网络 isoAdvector算法 OpenFOAM

2024

中国造船
中国造船工程学会

中国造船

CSTPCD北大核心
影响因子:0.81
ISSN:1000-4882
年,卷(期):2024.65(3)
  • 1