首页|基于深度学习的有义波高预报

基于深度学习的有义波高预报

扫码查看
有义波高是海浪气候预报的一个关键参数,传统的有义波高预报方法存在计算成本高的问题.论文构建了一个两阶段深度学习模型,利用卷积神经网络和长短期记忆网络,分阶段学习风和浪的时空关系,实现了有义波高的高精度预报.
Forecast of Significant Wave Height Based on Deep Learning
Wave climate forecasting plays a crucial role in marine-related engineering,with significant wave height being one of the key parameters.In this study,a two-stage deep learning model is constructed,utilizing convolutional neural networks and long short-term memory networks to learn the spatio-temporal relationships between wind and waves in a phased manner,thus achieving a high-precision forecast of significant wave height.

significant wave heightwave forecastdeep learningconvolutional neural networkslong short-term memory

孔圆、王先洲

展开 >

华中科技大学船舶与海洋工程学院,武汉 430074

船舶和海洋水动力湖北省重点实验室,武汉 430074

有义波高 海浪预报 深度学习 卷积神经网络 长短期记忆网络

2024

中国造船
中国造船工程学会

中国造船

CSTPCD北大核心
影响因子:0.81
ISSN:1000-4882
年,卷(期):2024.65(4)