首页|基于改进迁徙率模型的金融工具预期信用损失估值研究——以B公司为例

基于改进迁徙率模型的金融工具预期信用损失估值研究——以B公司为例

扫码查看
新版CAS22中最大的变动是金融资产的减值计提调整,由"已发生损失"变为"预期信用损失",因此需要企业前瞻性地关注未来潜在风险来确保资产质量,避免减值计提不充分或者不及时.本文在此背景下,以非金融类环保行业B企业作为案例,结合该企业自身、相关行业和国家数据构建前瞻性评价指标体系,通过机器学习DT-LSTM模型对迁徙率模型进行改进,评估该企业金融工具预期信用损失,并与迁徙率模型结果对比,满足会计谨慎性原则,并给出建议.
Research on Expected Credit Loss Estimation of Financial Instruments Based on Improved Migration Rate Model:Taking Company B as an Example
The biggest change in the new version of CAS22 is the adjustment of financial assets'impairment provision,which changes from"incurred loss"to"expected credit loss".Therefore,enterprises need to pay forward-looking attention to potential risks in the future to ensure asset quality and avoid insufficient or untimely impairment provision.In this context,this paper takes enterprise B in non-financial environmental protection industry as a case,combines the enterprise itself,relevant industry and national data to build a prospective evaluation index system,improves the migration rate model through machine learning DT-LSTM model,evaluates the expected credit loss of the enterprise's financial instruments,and compares the results with the migration rate model.Meet the accounting prudence principle and make recommendations.

Migration rate modelMachine learningExpected credit lossesCase study

耿界翔、祝叶、周圆兀、赵玉玲、刘彩云、李莉、陆文

展开 >

广西科技大学,广西柳州 545006

北京中同华资产评估有限公司,北京 100073

迁徙率模型 机器学习 预期信用损失 案例研究

研究生教育创新计划项目

YCSW2022444

2024

中国资产评估
中国资产评估协会

中国资产评估

CSTPCDCHSSCD
影响因子:0.164
ISSN:1007-0265
年,卷(期):2024.(8)
  • 11