首页|运用卷积神经网络预测中国太阳能路灯市场需求

运用卷积神经网络预测中国太阳能路灯市场需求

扫码查看
由于我国太阳能路灯市场需求呈非线性、不光滑的复杂分布,传统人工神经网络预测效果难如人意.卷积神经网络(CNN)通过使用过滤器,让相邻层神经元采用部分连接,同一特征平面的神经元参数相同,使所有神经元实现参数共享,性能优良,预测精度高.运用卷积神经网络对我国太阳能路灯市场需求进行了预测.结果显示,平均预测误差仅为0.958 8%,比支持向量机的 1.170 2%减小了 18.065 3%,比随机森林的 1.082 2%减小了 11.402 7%.利用模型预测了2023-2027 年我国太阳能路灯市场需求,通过分析,表明这一预测结果有一定的可信度.
Prediction of Market Demand for Solar Street Lights in China Based on CNN
Since the data of demand in the solar street lamp market in China,the prediction performance of traditional artificial neural networks is unsatisfactory.The convolutional neural network(CNN)uses filters to make the neurons of adjacent layers partially connected,and the neuron parameters of the same feature plane are the same,so that all neurons can share parameters,with excellent performance and high prediction accuracy.The convolution neural network was used to predict the market demand for solar street lights in China.The results show that the average prediction error is only 0.958 8%,18.065 3%less than 1.170 2%of SVM,and 11.402 7%less than 1.082 2%of random forest.The model was used to predict the market demand for solar street lights in China from 2023 to 2027,and analysis shows that this prediction result has high reliability.

solar energystreet lightsdemandpredictionCNN

舒服华

展开 >

武汉理工大学继续教育学院,湖北 武汉 430070

太阳能 路灯 需求量 预测 卷积神经网络

湖北省自然科学基金项目

2020CFB177

2024

中国照明电器
中国照明电器协会 国家轻工业照明电器信息中心 北京电光源研究所

中国照明电器

影响因子:0.271
ISSN:1002-6150
年,卷(期):2024.(7)