首页|基于深度学习与时空信息集成的O3预测研究

基于深度学习与时空信息集成的O3预测研究

扫码查看
高浓度臭氧会产生很多危害,精准预测臭氧浓度可为相关部门提供有效预警.基于深度学习和时空信息集成的方法,开发了一种新的集成模型,包括深度学习模块、气象与时空信息耦合预测模块与集成模块,对杭州市滨江站点的臭氧浓度进行了预测.结果显示:该模型在24 h预测中平均绝对误差(MAE)为19.35 μg·m-3,显著优于其他模型;该模型在不同程度的臭氧污染条件下均能较好地预测臭氧变化趋势,对于高浓度臭氧的峰值捕捉能力也最为显著;模型在不同季节均表现出较好的预测性能,在秋季表现最佳;模型的臭氧空气质量分指数(IAQI)预测准确率在24 h内表现最佳,准确率为0.81,其中在前3个h可达0.9以上,可以为臭氧污染治理提供科学支撑.
Study on O3 Prediction Based on Deep Learning and Spatiotemporal Information Integration
High concentrations of ozone can cause many hazards,and accurate prediction of ozone concentration can pro-vide effective early warning for relevant departments.Based on the method of deep learning and spatiotemporal information integration,this study developed a new integrated model,including a deep learning module,a meteorological and spatio-temporal information coupling prediction module and an integration module,to predict the ozone concentration at the Bin-jiang station in Hangzhou.The results show that the mean absolute error(MAE)of this model in 24 h prediction is 19.35μg·m-3,which is significantly better than other models.The model exhibits proficient capabilities in predicting ozone trends under various levels of ozone pollution,particularly excelling in capturing peak concentrations during high ozone epi-sodes.Moreover,the model showcases consistent performance across different seasons,with its optimal performance ob-served in autumn.Regarding the model's accuracy in predicting the ozone individual air quality index(IAQI),it performs notably well within 24 h,reaching an accuracy of 0.81.Specifically,its accuracy exceeds 0.9 within the initial 3 h,there-by offering substantial scientific support for ozone pollution management.

O3 concentration predictiondeep learningensemble learning

王释一、孙一鸣、吕钰宁、谢栋、顾浩南、施耀、曹晓勇、何奕

展开 >

浙江大学化学工程与生物工程学院,浙江杭州 310058

航天凯天环保科技股份有限公司,湖南长沙 410100

浙江大学衢州研究院,浙江衢州 324003

臭氧浓度预测 深度学习 集成学习

国家重点研发计划政府间国际科技创新合作重点专项项目

2022YFE0106100

2024

中国沼气
中国沼气学会 农业部沼气科学研究所

中国沼气

CSTPCD
影响因子:0.738
ISSN:1000-1166
年,卷(期):2024.42(5)