首页|基于XGBoost算法的冠心病阵列式脉图参数特征分析和辅助预测模型研究

基于XGBoost算法的冠心病阵列式脉图参数特征分析和辅助预测模型研究

扫码查看
目的 研究冠心病患者的阵列式脉图参数特征,探索基于极限梯度提升算法(extreme gradient boosting,XGBoost)建立冠心病辅助预测模型.方法 纳入社区老年体检中心的正常人群106例(正常对照组)和冠心病患者300 例(冠心病组),使用24 点阵列式脉诊仪采集受试者的脉象数据,分析冠心病组与正常对照组的阵列式脉图容积(array pulse volume,APV)差异,并基于XGBoost算法建立冠心病辅助预测模型.结果 3种脉图通道数据分析方法的对比差异结果趋同,均有冠心病组h1、h4、h5、h1/t1、As显著低于正常对照组(P<0.05),是3种分析方法中共有的冠心病脉图诊断特征.冠心病组APVh1、APVh2、APVh3、APVh4、APVh5 显著低于正常对照组(P<0.05).最大幅值通道均值法的模型综合性能最好,指标包括t1、t3、t4、w1、w2、w1/t、w2/t.结论 阵列式脉图特征参数一定程度上可以反映冠心病患者的心血管功能状态,APV指标可以提升模型的冠心病辅助预测性能.
Research on Parameter Feature Analysis and Auxiliary Prediction Model of Coronary Heart Disease Array Pulse Graph Based on XGBoost Algorithm
Objective To study the characteristics of array pulse diagram parameters of patients with coronary heart disease(CHD),and explore the establishment of auxiliary prediction model of CHD based on extreme gradient boosting(XGBoost).Methods 106 normal people(normal control group)and 300 patients with CHD(CHD group)were included in the community geriatric physical examination center.The pulse data of the subjects were collected by 24-point array pulse detector.The differences of array pulse pattern parameters between the CHD group and the normal control group were analyzed,and the auxiliary prediction model of CHD was established based on XGBoost algorithm.Results The comparative difference results of the three pulse map channel data analysis methods were similar,and h1,h4,h5,h1/t1 and As in the CHD group were significantly lower than those in the normal control group(P<0.05),which was a common diagnostic feature of CHD pulse map among the three analysis methods.APVh1,APVh2,APVh3,APVh4 and APVh5 in CHD group were significantly lower than those in normal control group(P<0.05).The maximum value channel mean method has the best comprehensive performance,including t1,t3,t4,w1,w2,w1/t and w2/t.Conclusion The characteristic parameters of the array pulse map can reflect the cardiovascular function status of patients with CHD to a certain extent,and the APV index can improve the auxiliary prediction performance of the model.

Coronary heart diseaseArray pulse patternClassification modelXGBoost

周智慧、崔骥、春意、张国豪、胡晓娟、屠立平、许家佗

展开 >

上海中医药大学中医学院,上海 201203

上海中医药大学上海中医健康服务协同创新中心,上海 201203

冠心病 阵列式脉图 分类模型 XGBoost

国家自然科学基金项目上海市科委项目上海中医药大学科技发展项目资助

819737502101050440023KFL028

2024

中国中医基础医学杂志
中国中医研究院基础理论研究所

中国中医基础医学杂志

CSTPCD
影响因子:0.779
ISSN:1006-3250
年,卷(期):2024.30(10)