首页|基于高光谱技术的场地土壤重金属污染快速调查研究

基于高光谱技术的场地土壤重金属污染快速调查研究

扫码查看
为了准确预测场地土壤重金属分布状况,实现土壤重金属污染快速调查,以某废弃助剂厂填埋区土壤为研究对象,基于高光谱数据,利用单变量回归模型、偏最小二乘回归模型和支持向量机模型估算土壤重金属Cr、Ni、Cu、Zn、Cd、Pb、As和Hg的含量。结果表明,土壤光谱反射率与各重金属含量均呈负相关;偏最小二乘回归模型和支持向量机模型对 8 种重金属的预测精度均优于单变量回归模型,偏最小二乘回归模型为Cd、Pb、Cr和Ni的最佳估算模型,支持向量机模型为Cu、As、Zn和Hg的最佳预测模型;研究区土壤重金属反演结果在趋势上与实验室分析结果基本一致,高值区和极值点分布亦较为吻合,能够圈定存在重金属污染风险的区域,同时提供技术支撑,实现场地土壤重金属污染的快速调查。
Study on Rapid Investigation of Heavy Metal Pollution in Site Soil Based on Hyperspectral Technology
In order to accurately predict the distribution of heavy metals in the soil of the site and achieve rapid investigation of soil heavy metal pollution,the soil in the landfill area of a certain waste additive factory is taken as the research object,based on hyperspectral data,univariate regression model,partial least squares regression model,and support vector machine model are used to estimate the content of heavy metals such as Cr,Ni,Cu,Zn,Cd,Pb,As,and Hg in the soil.The results show that there is a negative correlation between soil spectral reflectance and the content of various heavy metals;the partial least squares regression model and support vector machine model have better prediction accuracy for 8 heavy metals than univariate regression model,and the partial least squares regression model is the best estimation model for Cd,Pb,Cr,and Ni,while the support vector machine model is the best prediction model for Cu,As,Zn,and Hg;the trend of soil heavy metal inversion results in the research area is basically consistent with the laboratory analysis results,and the distribution of high value areas and extreme points is also relatively consistent,which can delineate areas with heavy metal pollution risks and provide technical support to achieve rapid investigation of soil heavy metal pollution on the site.

soilheavy metalshyperspectral reflectancepartial least squares regression modelsupport vector machine model

陈浩峰、方彦奇、杨奎、彭江英、赵国凤、贾朔

展开 >

江苏省航空对地探测与智能感知工程研究中心

江苏省地质勘查技术院,南京 210049

土壤 重金属 高光谱反射率 偏最小二乘回归模型 支持向量机模型

江苏省地矿局科研项目江苏省地矿局科研项目江苏省地矿局科研项目

2019KY11202004196K1K2021KY14

2024

中国资源综合利用
徐州北矿金属循环利用研究所 中国物资再生协会

中国资源综合利用

CHSSCD
影响因子:0.358
ISSN:1008-9500
年,卷(期):2024.42(6)
  • 10