首页|基于深度学习的纸病检测系统设计与研究

基于深度学习的纸病检测系统设计与研究

扫码查看
本课题设计了基于深度学习的纸病检测系统,用于提高造纸生产过程中的质量控制水平.该系统采用了"CCD+FPGA+工业控制计算机+训练计算机"的架构模式,实现了对纸张图像数据的实时采集、纸病的实时判断和纸病类型的实时识别.综合考虑分类准确率与推理速度,选择MobileNet模型算法,其分类准确率达99.5%,每秒可推理约103.1张分辨率为224×224的图像,满足现场纸病图像分类识别的实时要求.
Design and Research of Deep Learning-based Paper Defect Detection System
A deep learning-based paper defect detection system was designed in this paper to enhance the quality control of papermaking pro-duction.This system adopted the architecture model of"CCD+FPGA+industrial control computer+training computer",achieving real-time collection of paper image data,real-time assessment of paper defects,and real-time identification of types of paper defects.Consider-ing both classification accuracy and inference speed,the MobileNet model was chosen to achieve a classification accuracy of 99.5%.It could infer approximately 103.1 images per second with a resolution of 224×224,meeting the real-time requirements for on-site and recogni-tion of pager defect image classification.

paper defect detectiondeep learningsystem designarchitecture design

顾文君、谭永涛、李强、刘耀斌、周易、王平军、孙霞、陆文荣、吴昱昊、伍沐原

展开 >

嘉兴职业技术学院,浙江嘉兴,314036

嘉兴市工业互联网安全重点实验室,浙江嘉兴,314036

民丰特种纸股份有限公司,浙江嘉兴,314000

浙江省造纸行业协会,浙江杭州,310000

展开 >

纸病检测 深度学习 系统设计 架构设计

2024

中国造纸
中国造纸学会 中国制浆造纸研究院

中国造纸

北大核心
影响因子:0.525
ISSN:0254-508X
年,卷(期):2024.43(8)