首页|一种基于改进MaskRCNN的纸病诊断算法

一种基于改进MaskRCNN的纸病诊断算法

扫码查看
本研究提出了一种基于改进MaskRCNN网络的纸病诊断算法.该算法首先在原有的MaskRCNN网络的基础上,使用轻量化头部骨干网络VOVNet和精细化的RoIPooling(PrRoIPooling)对原网络模型进行改进,以减少原网络模型的参数使用量,提升检测分类速度;其次添加空间金字塔注意力机制(SPANet),以解决原网络模型对于小目标检测精确度不高的问题.采集4 000多张纸病图像对本研究提出的算法进行仿真验证.结果表明,改进的MaskRCNN模型比原网络模型在平均精度上提升了3个百分点,速度上提升了 15%,能够满足纸病诊断的实时性和准确性的实际需求.
An Improved MaskRCNN Based Paper Disease Diagnosis Algorithm
This paper proposed a paper disease diagnosis algorithm based on an improved MaskRCNN network.Firstly,this algorithm im-proved the network model by using a lightweight head backbone network VOVNet and a Precise RoIPooling(PrRoIPooling)on the basis of the original MaskRCNN network,in order to reduce the parameter usage of the original network model and improve the detection and classifi-cation speed.Secondly,a spatial pyramid attention mechanism(SPANet)was added to address the issue of low accuracy in detecting small objects in the original network model.More than 4 000 paper disease images were collected for simulation verification of the proposed algo-rithm.The results showed that the improved MaskRCNN model had increased average accuracy by 3 percentage points and speed by 15%compared to the original network model,which could meet the practical requirements of real-time and accuracy in paper disease diagnosis.

paper disease diagnosisMaskRCNNVOVNetPrRoIPoolingSPANet

汤伟、刘英伟、王孟效、耿志遥、刘常闯、杨亦君

展开 >

陕西科技大学电气与控制工程学院,陕西西安,710021

陕西西微测控工程有限公司,陕西咸阳,712000

纸病诊断 MaskRCNN VOVNet PrRoIPooling SPANet

2024

中国造纸
中国造纸学会 中国制浆造纸研究院

中国造纸

北大核心
影响因子:0.525
ISSN:0254-508X
年,卷(期):2024.43(12)