首页|基于RBF神经网络滑模控制的卷纸纠偏系统

基于RBF神经网络滑模控制的卷纸纠偏系统

扫码查看
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线.结果表明,在拉纸速度65 mm/s下,跑偏量从1.5mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小.
Research on Paper Roll Deviation Control System Based on RBF Neural Network Sliding Module Control
The servo correction control system was designed with RBF neural network through the establishment of its dynamic model.Using MATLAB/Simulink simulation software to simulate,and combining with experimental verification,the dynamic performance of the system was analyzed to obtain the response curve.The results showed that the deviation was reduced from 1.5 mm to 0.55 mm at the paper pulling speed of 65 mm/s,and the displacement and speed tracking error were small.

paper rolldeviation controlRBF neural networksliding module controlMATLAB/Simulinkdynamic performance

张继红

展开 >

四川职业技术学院智能制造学院,四川遂宁,629000

卷纸 纠偏控制 RBF神经网络 滑模控制 MATLAB/Simulink 动态性能

四川省教育厅自然科学研究项目

21ZA0347

2024

中国造纸学报
中国造纸学会

中国造纸学报

CSTPCD北大核心
影响因子:0.794
ISSN:1000-6842
年,卷(期):2024.39(1)
  • 19