首页|微流控器官芯片的构建及其在模拟软骨下骨骨重塑中的应用

微流控器官芯片的构建及其在模拟软骨下骨骨重塑中的应用

扫码查看
目的 构建微流控器官芯片,并评估其在模拟骨关节炎进程中软骨下骨骨重塑的能力.方法 基于微流控技术和细胞共培养技术设计芯片主体,MC3T3-E1细胞贴壁培养在细胞接种小室的内部,在细胞接种小室的底部以0.5 ml/min的流速灌流培养基.评价指标:(1)微流控器官芯片的评价:灌流生长培养基,采用模拟仿真实验测试不同时间点细胞接种小室内部和底部液体的浓度差和平衡时间;活死染色观察细胞在设定流速下连续培养3、7 d的生物相容性,分为3 d组和7 d组.(2)微流控器官芯片的促成骨作用:灌流成骨诱导培养基,通过碱性磷酸酶(ALP)染色和PCR比较细胞在静态和灌流条件下3、7 d的黑色ALP阳性细胞数量和成骨相关标志基因成骨特异性转录因子2(RUNX2)、I型胶原(COL1A1)、骨形态发生蛋白-2(BMP-2)、骨钙素(OCN)的表达情况,分为静态未诱导组、静态诱导组和灌流诱导组.(3)三种成骨细胞亚型外泌体(EVs)的形态和大小表征及生物相容性:获取三种不同细胞亚型[内皮型成骨细胞(EnOB)-EVs、基质型成骨细胞(StOB)-EVs和矿化型成骨细胞(MinOB)-EVs],通过透射电镜和粒径分析获取形态和大小;灌流含有三种不同细胞亚型EVs的生长培养基,通过细胞增殖/凋亡检测实验比较添加不同EVs浓度(1、1.25、2.5、5μg/ml)24h的生物相容性,分为EnOB-EVs组、StOB-EVs组、MinOB-EVs组.(4)三种成骨细胞亚型EVs的促成骨作用:灌流含有三种不同细胞亚型EVs的成骨诱导培养基3 d,通过ALP染色和PCR比较黑色ALP阳性细胞数量和成骨相关标志基因RUNX2、COL1A1、BMP-2、OCN的表达情况,分为无EVs组、EnOB-EVs组、StOB-EVs组和MinOB-EVs组.结果 (1)微流控器官芯片的评价:模拟仿真结果显示,在持续灌流12 h后,上室最上层浓度达到下室浓度的95%以上,最下层为下室浓度的96.5%左右,上下室的浓度差达到平衡状态.活死染色结果表明,芯片在0.5 ml/min的流速下,生物相容性好,灌流3、7 d细胞存活率分别为(99.48±0.12)%、(97.07±1.05)%(P<0.01).(2)ALP染色结果显示,3 d时灌流诱导组黑色ALP阳性细胞最多,静态诱导组其次,静态未诱导组最少;7 d时静态诱导组黑色ALP阳性细胞最.多,灌流诱导组其次,静态未诱导组最少.PCR结果显示,3d时静态未诱导组RUNX2、COL1A1、BMP-2、OCN表达水平分别为 1.00±0.03、1.00±0.12、1.00±0.01、1.00±0.02,静态诱导组分别为 1.80± 0.04、4.05±0.37、9.80±1.94、4.38±0.89,灌流诱导组分别为 2.45±0.23、5.48±0.42、91.50±4.56、10.82±4.96(P<0.01).7 d时静态未诱导组RUNX2表达水平为1.00±0.01,静态诱导组为1.46± 0.46,灌流诱导组为1.11±0.08(P>0.05);静态未诱导组COL1A1、BMP-2、OCN表达水平分别为1.00± 0.03、1.00±0.13、1.00±0.09,静态诱导组分别为9.38±0.25、14.27±4.35、84.01±4.02,灌流诱导组分别为2.39±0.08、133.64±8.87、86.64±8.36(P<0.01).3、7 d时静态未诱导组、静态诱导组和灌流诱导组相互比较,均为灌流诱导组的促成骨能力最强.(3)三种成骨细胞亚型EVs的形态和大小表征及生物相容性:透射电镜下EnOB-EVs、StOB-EVs、MinOB-EVs均为典型的茶托状形态.粒径分析结果显示,EnOB-EVs、StOB-EVs、MinOB-EVs 的大小分别为(91.3±14.7)nm、(106.0±16.0)nm、(68.1±10.7)nm.细胞增殖/凋亡检测结果显示,EnOB-EVs、StOB-EVs、MinOB-EVs的最佳给药浓度均为1.25 μg/ml.(4)微流控器官芯片对于三种EVs促成骨功能验证:ALP染色结果显示,无EVs组黑色ALP阳性细胞最少,添加EnOB-EVs组其次,StOB-EVs组再者,MinOB-EVs组最多.PCR结果显示,无EVs组RUNX2、COL1A1、BMP-2、OCN表达水平分别为 1.00±0.01、1.00±0.03、1.00±0.02、1.00±0.02,EnOB-EVs组分别为 1.95±0.11、6.78±2.04、7.99±0.57、6.93±3.83,StOB-EVs 组分别为 0.79±0.12、5.68±1.53、12.59±3.15、25.59±0.95,MinOB-EVs组分别为 0.68±0.10、4.36±0.69、18.75±3.21、34.74±3.98(P<0.01).无EVs组、EnOB-EVs组、StOB-EVs组和MinOB-EVs组相互比较,MinOB-EVs组促成骨效果最明显.结论 基于微流控技术和细胞共培养技术所构建的微流控器官芯片能够维持MC3T3-E1细胞的正常生长、促进MC3T3-E1细胞的增殖和成骨诱导分化能力.不同时期的成骨细胞所释放的EVs具有促成骨作用,加速骨关节炎进程中软骨下骨骨重塑中骨硬化的现象.
Construction of microfluidic organ-on-a-chip and its application in simulating subchondral bone remodeling
Objective To construct a microfluidic organ-on-a-chip and evaluate its capability in simulating subchondral bone remodeling during the progression of osteoarthritis.Methods The chip's main body was designed based on the microfluidic technology and cell co-culture technique.MC3T3-E1 cells were cultured adherently within the cell seeding micro-chamber,with the culture medium perfused at a flow rate of 0.5 ml/min at the bottom of the micro-chamber.Evaluation metrics were as follows:(1)Assessment of the microfluidic organ-on-a-chip:The growth culture medium was perfused and simulation experiments were conducted to test the concentration differences and equilibrium times of the fluid inside and at the bottom of the cell seeding micro-chamber at various time points;live-dead staining was performed to observe the biocompatibility of cells cultured continuously for 3 days and 7 days at a set flow rate,which was divided into 3-day and 7-day groups.(2)Osteogenic potential of the microfluidic organ-on-a-chip:The osteogenic induction medium was perfused,and ALP staining and PCR were performed to compare the number of the black alkaline phosphatase(ALP)-positive cells and the expression levels of osteogenesis-related marker genes including osteoblast-specific transcription factor 2(RUNX2),type I collagen(COL1A1),bone morphogenetic protein-2(BMP-2),and osteocalcin(OCN)under static,3-day and 7-day perfusion conditions,which was divided into static non-induced,static-induced and perfusion-induced groups.(3)Characterization of morphology and size,and biocompatibility of extracellular vesicles(EVs)of three osteoblast subtypes:Three different subtypes of osteoblasts were obtained[endothelial-type osteoblasts(EnOB)-EVs,stromal-type osteoblasts(StOB)-EVs and mineralizing-type osteoblasts(MinOB)-EVs].Their morphology and size were obtained through transmission electron microscopy and particle size analysis.Growth medium containing EVs of three different cell subtypes was perfused,and cell prolifcration/apoptosis assay was performed to compare the biocompatibility of the addition of different EVs concentrations(1,1.25,2.5,and 5 pg/ml)for 24 hours,which was categorized into the EnOB-EVs group,StOB-EVs group and MinOB-EVs group.(4)Osteogenic effect of EVs from three subtypes of osteoblasts:Osteogenic induction media containing EVs from three different osteoblast subtypes were perfused for 3 days,and ALP staining and PCR were performed to compare the number of black ALP-positive cells and the expression levels of osteogenesis-related marker genes including RUNX2,COL1A1,BMP-2,and OCN,which was divided into non-EVs group,EnOB-EVs group,StOB-EVs group and MinOB-EVs group.Results(1)Evaluation of the microfluidic organ-on-a-chip:Simulation results showed that the concentration in the top layer of the upper chamber reached more than 95%of that in the lower chamber and that the concentration in the bottom layer was about 96.5%of that in the lower chamber after 12 hours of continuous perfusion,reaching an equilibrium state of the concentration difference between the upper and lower chambers.The results of live-dead staining showed that the chip was biocompatible at a flow rate of 0.5 mUmin,and the cell survival rate at 3 and 7 days of perfusion was(99.48±0.12)%and(97.07±1.05)%(P<0.01).(2)ALP staining results showed that at 3 days,the perfusion-induced group showed the highest number of black ALP-positive cells,followed by the static-induced group,and the least in the static non-induced group.At 7 days,the static-induced group had the highest number of black ALP-positive cells,followed by the perfusion-induced group,and the least in the static non-induced group.PCR results indicated that at 3 days,the expression levels of RUNX2,COL1A1,BMP-2,and OCN were 1.00±0.03,1.00±0.12,1.00±0.01,and 1.00±0.02 respectively in the static non-induced group;1.80±0.04,4.05±0.37,9.80±1.94,and 4.38±0.89 respectively in the static-induced group,and 2.45±0.23,5.48±0.42,91.50±4.56,and 10.82±4.96 respectively in the perfusion-induced group(P<0.01).At 7 days,the expression levels of RUNX2 was 1.00±0.01 in the static non-induced group,1.46±0.46 in the static-induced group,and 1.11±0.08 in the perfusion-induced group(P>0.05);the expression levels of COL1A1,BMP-2,and OCN were 1.00±0.03,1.00±0.13,and 1.00±0.09 respectively in the static non-induced group,9.38±0.25,14.27±4.35,and 84.01±4.02 respectviely in the static-induced group,and 2.39±0.08,133.64±8.87,and 86.64±8.36 respectively in the perfusion-induced group(P<0.01).When comparing the static non-induced,static-induced,and perfusion-induced groups at both 3 and 7 days,the perfusion-induced group demonstrated the strongest osteogenic capability.(3)Characterization of morphology and size and biocompatibility of EVs from three osteoblast subtypes:Under the transmission electron microscope,EVs from EnOB-EVs,StOB-EVs,and MinOB-EVs all exhibited a typical saucer-shaped morphology.The particle sizes of EnOB-EVs,StOB-EVs,and MinOB-EVs were(91.3±14.7)nm,(106.0± 16.0)nm,and(68.1±10.7)nm,respectively.Cell proliferation/apoptosis assay results indicated that the optimal administration concentration of EnOB-EVs,StOB-EVs,and MinOB-EVs was all 1.25 μg/mL.(4)Validation of osteogenic effect of the microfluidic organ-on-a-chip on three types of EVs:ALP staining results showed that the non-EVs group had the fewest black ALP-positive cells,followed by the EnOB-EVs group,then the StOB-EVs group,and the MinOB-EVs group had the most.PCR results showed that the expression levels of RUNX2,COL1A1,BMP-2,and OCN were 1.00±0.01,1.00±0.03,1.00±0.02,and 1.00±0.02 respectively in the non-EVs group,1.95±0.11,6.78±2.04,7.99±0.57,and 6.93±3.83 repectively in the EnOB-EVs group,0.79±0.12,5.68±1.53,12.59±3.15,and 25.59±0.95 respectively in the StOB-EVs group,and 0.68±0.10,4.36±0.69,18.75±3.21,and 34.74±3.98 repectively in the MinOB-EVs group(P<0.01).Compared with the non-EVs group,EnOB-EVs group,StOB-EVs group,and MinOB-EVs group,the MinOB-EVs group showed the most significant osteogenic effect.Conclusions The microfluidic organ-on-a-chip constructed using microfluidic technology and cell co-culture techniques is capable of maintaining the normal growth of MC3T3-E1 cells,enhancing their proliferation and osteogenic induction differentiation.EVs released by osteoblasts at different stages possess osteogenic effects and can accelerate the bone sclerosis in the remodeling of subchondral bone during the progression of osteoarthritis.

OsteoarthritisMicrofluidicsExosomes

沈芙茗、廖玲妮、王文君、李冀龙、张浩、胡衍、徐可、苏佳灿

展开 >

上海大学转化医学研究院,上海 200444

上海傲睿科技有限公司,上海 201800

上海交通大学医学院附属新华医院骨科,上海 200092

骨关节炎 微流体学 外泌体

国家自然科学基金重点项目国家自然科学基金重点项目国家自然科学基金重大集成项目上海科学技术委员会实验动物专项中国博士后科学基金第73批面上国家资助博士后研究人员计划

822300718217209892249303231419006002023M732179GZB20230397

2024

中华创伤杂志
中华医学会

中华创伤杂志

CSTPCD北大核心
影响因子:1.425
ISSN:1001-8050
年,卷(期):2024.40(2)
  • 32