首页|中重型创伤性脑损伤患者伤后6个月预后不良预测列线图的构建与验证

中重型创伤性脑损伤患者伤后6个月预后不良预测列线图的构建与验证

扫码查看
目的 构建中重型创伤性脑损伤(msTBI)患者伤后6个月预后不良的预测列线图并进行验证.方法 采用回顾性队列研究分析2020年1月至2022年12月中国人民解放军联勤保障部队第九○四医院收治的387例msTBI患者的临床资料,其中男265例,女122例;年龄6~97岁[58(47,68)岁].根据伤后6个月格拉斯哥预后评分(GOS),将患者分为预后良好组(GOS4~5分,201例)和预后不良组(GOS 1~3分,186例).记录两组入院时临床特征、影像学表现和实验室检查结果.采用单因素分析评估上述指标与msTBI患者伤后6个月预后不良的相关性.绘制单个变量的受试者工作特征(ROC)曲线及连续性变量之间的相关性热图.Lasso回归用于筛选变量,多因素Logistic回归分析确定独立预测因子用于构建Logistic回归方程,并绘制列线图.采用数据随机拆分和非随机拆分方式进行内部验证.随机拆分时,数据按6∶4的比例拆分为训练组(232例)和验证组(155例).非随机拆分时,2020年1月至2021年12月收治的患者为训练组(260例),2022年1月至2022年12月收治的患者为验证组(127例).采用受试者工作特征(ROC)曲线下面积(AUC)评估模型在训练组和验证组中的预测能力,校准曲线及Hosmer-Lemeshow(H-L)检验评估模型的校准度,决策曲线分析(DCA)评估模型的临床适用性.与非纳入中性粒细胞/淋巴细胞比值(NLR)模型相比,分析纳入NLR模型对msTBI患者伤后6个月预后不良预警效能的影响.结果 单因素分析结果显示,年龄、住院时长、格拉斯哥昏迷评分(GCS)、美国麻醉医师协会身体状态(ASA-PS)分级、损伤严重度评分(ISS)、院前气管插管、低血压、低氧、瞳孔反应性、中线移位、基底池状态、创伤性蛛网膜下腔出血(tSAH)、D-二聚体、凝血酶原时间活动度(PTA)、葡萄糖、血红蛋白、K+、Cl-、Ca2+、HCO-、肌酐、白蛋白、乳酸、血小板、淋巴细胞、系统免疫炎症指数(SII)、NLR和淋巴细胞与单核细胞比值(LMR)与msTBI患者伤后6个月预后不良有一定的相关性(P<0.05或0.01).单个变量的ROC曲线显示,GCS(AUC=0.82)、ISS(AUC=0.81)、瞳孔反应性(AUC=0.76)、基底池状态(AUC=0.73)和NLR(AUC=0.73)具有较好的预测效能.相关性热图显示,各连续性变量之间存在显著相关性和共线性,而ISS和NLR之间不存在共线性.Lasso回归共筛选出14个潜在预测因子并被纳入多因素Logistic回归分析,结果表明,年龄(OR=0.86,95%CI1.38,5.19)、GCS 6~8 分(OR=3.13,95%CI 1.06,9.27)、GCS 3~5 分(OR=12.36,95%CI2.81,54.27)、ISS(OR=3.68,95%CI 1.38,9.80)、瞳孔反应性(OR=2.45,95%CI 0.85,7.07)及 NLR(OR=2.62,95%CI1.52,4.51)是msTBI患者伤后6个月预后不良的独立危险因素(P<0.05或0.01).多因素Logistic 回归方程为 Logit[P/(1-P)]=0.066×"年龄"+1.474×"GCS 6~8"+2.357×"GCS 3~5"+0.066×"ISS"+0.965×"瞳孔对光反射缺如"+0.194×"NLR"-10.704.随机拆分数据的内部验证中,训练组模型AUC为0.93(95%CI0.89,0.96),验证组模型AUC为0.93(95%CI0.89,0.97).非随机拆分的内部验证中,训练组模型 AUC 为 0.94(95%CI 0.91,0.97),验证组模型 AUC 为 0.93(95%CI 0.89,0.97).校准曲线和H-L检验显示,该模型具有较好的校准能力(P>0.5).DCA结果表明,应用该列线图将增加患者净收益率(风险阈值概率为0.0~0.8).纳入NLR模型(AUC=0.93)较传统模型(AUC=0.90)能增强预警效能.结论 年龄、GCS、ISS、瞳孔反应性及NLR是msTBI患者伤后6个月预后不良的独立危险因素.以这些参数所构建的列线图可较好地预测msTBI患者的临床结局.
Construction and validation of a nomogram for predicting unfavorable prognosis at 6 months after moderate and severe traumatic brain injury
Objective To construct a nomogram for predicting unfavorable prognosis at 6 months after moderate and severe traumatic brain injury(msTBI)and validate its predictive effectiveness.Methods A retrospective cohort study was conducted to analyze the clinical data of 387 patients with msTBI who were admitted to 904th Hospital of the Joint Logistic Support Force of PLA from January 2020 to December 2022,including 265 males and 122 females,aged 6-97 years[58(47,68)years].According to the Glasgow outcome scale(GOS)score at 6 months after injury,the patients were divided into favorable prognosis group(GOS 4-5 points,n=201)and unfavorable prognosis group(GOS 1-3 points,n=186).The clinical characteristics,imaging manifestations,and laboratory test results of the two groups on admission were recorded.Univariate analysis was applied to evaluate the correlation between the aforementioned indicators and the unfavorable prognosis of the msTBI patients at 6 months after injury.Receiver operating characteristic(ROC)curves of single variable and the correlation heatmap among continuous variables were plotted.Lasso regression was used to select variables and multivariate Logistic regression analysis was used to determine independent predictive factors so as to construct Logistic regression equation and plot the nomogram.The internal verification was carried out by means of random and non-random split of data.In random split,the data were divided randomly with a ratio of 6∶4 into training group(n=232)and verification group(n=155).In non-random split,the patients admitted from January 2020 to December 2021 were assigned to the training group(n=260),while those admitted from January 2022 to December 2022 to the verification group(n=127).Area under the curve(AUC)was used to evaluate the predictive ability of the model in the training group and verification group,calibration curve and Hosmer-Lemeshow(H-L)test to evaluate its goodness of fit,and decision curve analysis(DCA)to evaluate its clinical applicability.The influence of inclusion of neutrophil-to-lymphocyte ratio(NLR)model on the warning effectiveness of poor prognosis was analyzed in comparison with the model without inclusion of NLR.Results Univariate analysis showed that there was a certain correlation between age,length of hospital stay,Glasgow coma scale(GCS),American Society of Anesthesiologists Physical Status(ASA-PS)classification,Injury severity score(ISS),prehospital tracheal intubation,hypotension,hypoxia,pupillary responsiveness,midline shift,basilar cisterna status,traumatic subarachnoid hemorrhage(tSAH),D-Dimer,prothrombin time activity(PTA),glucose,hemoglobin,K+,Cl-,Ca2+,HCO-,creatinine,albumin,lactic acid,platelet,lymphocyte,systemic immune-inflammation index(SII),NLR,lymphocyte-to-monocyte ratio(LMR)and unfavorable prognosis of msTBI patients at 6 months after injury(P<0.05 or 0.01).The ROC curve of single variable showed that GCS(AUC=0.82),ISS(AUC=0.81),pupillary responsiveness(AUC=0.76),basal cistern status(AUC=0.73)and NLR(AUC=0.73)had good predictive validity.The results of the correlation heatmap showed that there was a significant correlation and collinearity among the continuous variables,while no collinearity was found between ISS and NLR.Fourteen potential predictors selected by Lasso regression were included in multivariate Logistic regression analysis and its results showed that age(OR=0.86,95%CI 1.38,5.19),GCS 6-8 points(OR=3.13,95%CI 1.06,9.27),GCS 3-5 points(OR=12.36,95%CI 2.81,54.27),ISS(OR=3.68,95%CI 1.38,9.80),pupillary responsiveness(OR=2.45,95%CI 0.85,7.07),and NLR(OR=2.62,95%CI 1.52,4.51)were identified as the independent risk factors for unfavorable prognosis of msTBI patients at 6 months after injury(P<0.05 or 0.01).The multivariate Logistic regression equation was Logit[P/(1-P)]=0.066×"age"+1.474×"GCS 6-8"+2.357×"GCS 3-5"+0.066×"ISS"+0.965×"absence of pupillary light reflex"+0.194×"NLR"-10.704.In the internal verification of random split of data,the AUC value of the model was 0.93(95%CI 0.89,0.96)in the training group and 0.93(95%CI 0.89,0.97)in the verification group.In the internal verification of non-random split,the AUC value was 0.94(95%CI 0.91,0.97)in the training group and 0.93(95%CI 0.89,0.97)in the verification group.The calibration curve and H-L test showed that the model had good calibration ability(P>0.5).The results of DCA showed that the application of the nomogram would increase the net benefit of the patients(risk threshold probability of 0.0-0.8).Compared with the conventional model(AUC=0.90),inclusion of NLR model(AUC=0.93)enhanced the warning effectiveness.Conclusions Age,GCS,ISS,pupillary responsiveness and NLR are independent risk factors affecting unfavorable prognosis in msTBI patients at 6 months after injury,based on which the nomogram constructed can better predict the clinical outcome of msTBI patients.

Brain injuriesPrognosisModel,statisticalNomograms

杨洪桥、周昭鹏、刘美、丁长赓、车雯雯、王玉海

展开 >

中国人民解放军联勤保障部队第九○四医院神经外科,安徽医科大学无锡临床学院,无锡 214008

安徽医科大学第五临床学院,合肥 230022

脑损伤 预后 模型,统计学 列线图

无锡市科技发展基金军队后勤科研项目江苏省卫生健康委科会科研项目

Y20222025CLB20J027K2019018

2024

中华创伤杂志
中华医学会

中华创伤杂志

CSTPCD北大核心
影响因子:1.425
ISSN:1001-8050
年,卷(期):2024.40(6)