首页|基于改进的SURF算法的机械臂识别定位及抓取研究

基于改进的SURF算法的机械臂识别定位及抓取研究

扫码查看
针对采用传统SURF算法对机械臂工作区域内的目标进行识别时出现的运行速度较慢、匹配准确度较低等问题,提出一种基于改进的SURF算法的机械臂识别定位及抓取方法.首先,利用传统SURF算法提取目标的尺度不变性特征点;随后,通过rBRIEF描述子与低方差过滤分别对提取特征实施描述及降维,再进行基于Hamming距离的2-NN特征点交叉匹配,并采用RANSAC算法剔除错误匹配对;最后,结合双目立体视觉三维重建获取目标的空间三维坐标,并将机械臂逆运动学求解得到的各个关节驱动角输入控制系统,驱使舵机带动机械臂末端执行器完成对目标的抓取作业.实验结果表明,采用改进的SURF算法,较SIFT、传统SURF算法提高了目标特征点的识别速度与匹配准确度,有效提升了机械臂抓取的实时性及精准性.
Research on Recognition Positioning and Grasping of Manipulator Based on Improved SURF Algorithm
Aiming at the problems of slow running speed and low matching accuracy when traditional SURF algorithm is used to identify objects in the working area of the manipulator,an improved SURF algo-rithm based recognition,positioning and grasping method for the manipulator is proposed.First,the tradi-tional SURF algorithm was used to extract the scale invariant feature points of the target.Then,rBRIEF de-scriptors and low variance filtering were used to describe and reduce the dimension of the extracted fea-tures.Then,2-NN feature points were cross-matched based on Hamming distance,and the wrong matching pairs were removed by RANSAC algorithm.Finally,three-dimensional coordinates of the target were ob-tained by binocular stereo vision 3D reconstruction,and each joint driving Angle obtained by inverse kine-matics of the manipulator was input into the control system to drive the steering gear to drive the end-effec-tor of the manipulator to grasp the target.The experimental results show that,compared with SIFT and tra-ditional SURF algorithms,the improved SURF algorithm can improve the recognition speed and matching accuracy of target feature points,and effectively improve the real-time and accurate grasp of the robot arm.

SURF algorithmbinocular stereo visiontarget recognitiontarget grasping

李鑫炎、周敏、张美洲、陈燕军

展开 >

武汉科技大学 冶金装备及其控制教育部重点实验室,武汉 430081

武汉科技大学 机械传动与制造工程湖北省重点实验室,武汉 430081

武汉科技大学 精密制造研究院,武汉 430081

SURF算法 双目立体视觉 目标识别 目标抓取

国家自然科学基金项目

51975431

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(1)
  • 10