首页|基于数字孪生的滚动轴承状态监测研究

基于数字孪生的滚动轴承状态监测研究

扫码查看
旋转机械中轴承是比较容易发生故障的零件,为了实现对其运行状态的检测,提出了基于数字孪生技术的轴承状态监测方法.首先对滚动轴承进行动力学分析;然后基于Modelica多领域建模方法建立轴承的数字孪生模型,模拟在不同健康状态下的轴承运行状态.以滚动轴承的 3 种健康状态为例,通过数字孪生模型的仿真得到的振动信号;最后将数字孪生模型得到的信号与试验台测试结果,以及理论计算结果之间做比较,证明该数字孪生模型能够有效反应轴承的运行状态,实现了对轴承的状态监测.
Research on State Detection of Deep Groove Ball Bearing Based on Digital Twin
Bearings are relatively prone to failure parts in rotating machinery.In order to detect their operat-ing status,a bearing status monitoring method based on digital twin technology is proposed.First,the dy-namic analysis of the rolling bearing is carried out,and then the digital twin model of the bearing is estab-lished based on the Modelica multi-domain modeling method to simulate the operating state of the bearing under different health states.Taking the three health states of rolling bearings as an example,the vibration signals are obtained through the simulation of the digital twin model.Finally,by comparing the signal ob-tained by the digital twin model with the test results of the test bench and the theoretical calculation results,it is proved that the digital twin model can effectively reflect the running state of the bearing and realize the state monitoring of the bearing.

digital twinrolling bearingcondition monitoringModelica

吴静远、舒启林、魏永合

展开 >

沈阳理工大学机械工程学院,沈阳 110159

数字孪生 滚动轴承 状态监测 Modelica

国家自然科学基金资助项目

51875368

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(1)
  • 1
  • 2