首页|基于DBN网络的滚动轴承故障诊断

基于DBN网络的滚动轴承故障诊断

扫码查看
为了提高滚动轴承故障诊断的准确率,提出基于DBN网络的滚动轴承故障诊断方法.针对浅层神经网络难以从振动信号中提取深层故障特征且易陷入维度灾难等技术难点,结合深度置信网络(DBN)能够处理高维非线性数据和有效提取故障特征的特点,建立基于DBN网络的滚动轴承故障诊断模型.通过验证分析,确定了DBN的隐含层层数、最佳数据类型、激活函数等网络参数,为DBN网络参数的设置提供一种新的方法与思路.并对受限玻尔兹曼机(RBM)的重构能力进行了验证.将DBN网络与BP、ELM、PNN等浅层神经网络进行了对比分析,结果表明DBN网络具有较高的诊断精度与较强的稳定性,证明了DBN网络在滚动轴承故障诊断中的有效性.
Fault Diagnosis of Rolling Bearing Based on DBN Network
In order to improve the accuracy of rolling bearing fault diagnosis,a rolling bearing fault diagno-sis method based on DBN network is proposed.Aiming at the technical difficulties such as shallow neural networks that are difficult to extract deep fault features from vibration signals and are prone to dimensional disasters,a rolling bearing fault diagnosis model based on DBN network is established by combining the characteristics of deep belief network(DBN)that can process high-dimensional nonlinear data and effec-tively extract fault features.Through verification analysis,the network parameters such as the number of hidden layers,optimal data type,and activation function of DBN were determined,It provides a new method and idea for the setting of DBN network parameters.and the reconstruction ability of the restricted Boltz-mann machine was verified and analyzed.DBN is compared and analyzed with BP,ELM,PN and other shallow neural networks,and the results show that DBN network has high diagnostic accuracy and strong stability,which proves the effectiveness of DBN network in rolling bearing fault diagnosis.

deep belief networkrestricted boltzmann machinesrolling bearingfault diagnosis

刘鹏、皮骏、胡超

展开 >

江苏航空职业技术学院航空工程学院,镇江 212134

中国民航大学交通科学与工程学院,天津 300300

深度置信网络 受限玻尔兹曼机 滚动轴承 故障诊断

2022年度江苏航空职业技术学院院级重点课题资助项目中央高校基本科研业务费中国民航大学专项资助项目

JATC220101043122019174

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(1)
  • 8