首页|基于声振融合的二次EWT-CNN刀具磨损监测

基于声振融合的二次EWT-CNN刀具磨损监测

扫码查看
为了实现加工过程中对刀具磨损状态的监测,提出一种基于协同过滤融合的方法.首先,对工作刀具振动信号和声音信号进行特征相关性分析后进行数据层融合;然后,将得到的声振融合信号进行二次经验小波变换(EWT)后去噪重构;最后,将重构信号进行信号增强并送入CNN实现特征提取及刀具故障识别.通过对不同故障类型的麻花钻头进行故障识别实验,在声音、振动以及声振融合信号和不同信号去噪重构方法的对比下,该方法对不同故障类型的钻头作出了98.96%的高识别率.验证了所提方法在刀具故障识别方面的优越性.
Secondary EWT-CNN Tool Wear Monitoring Based on Vibroacoustic Fusion
In order to realize the fault monitoring of the working state of the tool during the machining process,a method based on collaborative filtering and fusion is proposed to analyze the feature correlation between the vibration signal and the sound signal of the working tool and then fuse the data layer,and the obtained acoustic-vibroacoustic fusion signal is denoising and reconstructed after the second empirical wavelet transform(EWT),and finally the reconstructed signal is enhanced and sent to CNN to realize fea-ture extraction and tool fault identification.Through the fault identification experiment of twist drill bits of different fault types,the method has a high recognition rate of 98.96%for drill bits of different fault types under the comparison of sound,vibration,vibroacoustic fusion signals and different signal denoising recon-struction methods.The superiority of the proposed method in tool fault detection is verified.

vibroacoustic fusion signaltool wearfault identificationempirical wavelet transformconvo-lutional neural networks

郝旺身、娄永威、董辛旻、李继康、娄本池

展开 >

郑州大学机械与动力工程学院,郑州 450001

声振融合信号 刀具磨损 故障识别 经验小波变换 卷积神经网络

国家重点研发计划项目河南省科技攻关资助项目

2016YFF0203104-5202102210075

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 8