首页|基于多策略融合改进粒子群算法的路径规划研究

基于多策略融合改进粒子群算法的路径规划研究

扫码查看
针对传统粒子群算法(particle swarm optimization,PSO)在路径规划中易陷入局部最优使得规划路径较长以及搜索后期由于种群多样性降低容易陷入停滞等问题,提出一种多策略融合粒子群算法(multi-strategy fusion particle swarm optimization,MFPSO)并将其应用于路径规划中.首先,利用中垂线算法(midperpendicular algorithm)的粒子位置更新方法提升粒子的收敛速度;其次,在最优粒子附近采用生成爆炸粒子的策略使算法跳出局部最优;然后,引入线性动态惯性权重调整方法,增加算法的搜索能力;最后,在路径规划应用中采用全局最优解局部搜索策略,在算法后期得出的最优路径再进行局部搜索得出更优的路径,增加机器人路径规划能力.仿真结果表明,多策略融合粒子群算法在路径规划中具有更高的路径搜索能力.
Path Planning Based on Multi-Strategy Fusion Particle Swarm Optimization Algorithm
In order to solve the problem that the traditional particle swarm optimization algorithm is easy to fall into the local optimal in the path planning,which makes the planned path long and easy to stall due to the decrease of population diversity in the late search period,a multi-strategy fusion particle swarm optimi-zation algorithm is proposed and applied to the path planning.Firstly,the particle position updating method of the midvertical algorithm is used to improve the convergence rate of particles.Secondly,the strategy of generating explosive particles near the optimal particles is used to make the algorithm jump out of the local optimal.Then the linear dynamic inertia weight adjustment method is introduced to increase the searching a-bility of the algorithm.Finally,the local search strategy of the global optimal solution is adopted in the path planning application.The optimal path obtained at the later stage of the algorithm is then locally searched to obtain a better path,which increases the path planning ability of the robot.The simulation results show that the multi-strategy fusion particle swarm optimization algorithm has higher path search capability in path planning.

path planningmidvertical algorithmexplosive particleglobal optimal solution local search

陈旭东、杨光永、徐天奇、樊康生

展开 >

云南民族大学电气信息工程学院,昆明 650000

路径规划 中垂线算法 爆炸粒子 全局最优解局部搜索

国家自然科学基金国家自然科学基金

6176104961261022

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 16