首页|基于改进蚁群算法的焊接机器人路径优化

基于改进蚁群算法的焊接机器人路径优化

扫码查看
针对传统蚁群算法(ACO)在焊接机器人路径规划的过程中收敛速度慢、易陷入局部最优解等问题,提出一种改进蚁群算法(DWAG).DWAG在ACO基础上提出了基于动态权重策略以及排序因子策略的信息素更新方式,加快了算法在求解过程中的收敛速度;通过引入遗传算法中的交叉与变异操作,扩大了算法在求解过程中的搜索空间;最后以白车身后地板总成某工位对DWAG进行20 次的仿真验证.仿真结果表明相比于ACO,DWAG的焊接路径更短、收敛速度更快同时求解问题时寻优性能的稳定性更佳.
Path Optimization of Welding Robot Based on Improved Ant Colony Algorithm
In response to the slow convergence speed and susceptibility to local optima issues in the tradi-tional ant colony optimization(ACO)algorithm for welding robot path planning,a modified algorithm called dynamic weighted ant colony algorithm(DWAG)is proposed.DWAG enhances the information pheromone update process based on dynamic weight strategy and sorting factor strategy,accelerating the convergence speed during the solving process.By incorporating crossover and mutation operations from the genetic algorithm,the search space in the solving process is expanded.Lastly,DWAG is validated through 20 simulations at a certain workstation for welding the rear floor assembly in a white car body.The simula-tion results demonstrate that compared to ACO,DWAG achieves shorter welding paths,faster convergence speed,and better stability in optimizing performance during problem-solving.

welding robotpath planningimproved ant colony algorithmsimulation

孙振博、王明伟、李姝、张文超

展开 >

大连工业大学机械工程与自动化学院,大连 116034

焊接机器人 路径规划 改进蚁群算法 仿真

2022年度辽宁省教育厅基本科研项目

LJKFZ20220208

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 2
  • 8