首页|结合时空特征的多传感器刀具磨损监测

结合时空特征的多传感器刀具磨损监测

扫码查看
针对传统深度学习方法监测刀具磨损状况时,相关特征提取繁琐,数据隐含信息提取不全面导致识别精度较低等问题,提出了结合时空特征的多传感器刀具磨损监测模型.首先,将不同传感器采集的波形信号经简单预处理后作为输入,再使用多通道1D卷积神经网络(MC-1DCNN)提取输入数据的空间特征;然后,利用双向长短时记忆网络(BiLSTM)提取时序特征;最终,由全连接层和Soft-max层对特征进行分类.仿真结果表明,监测模型流程简单、识别准确率高,具备较强的可适用性.
Multi-Sensor Tool Tear Yonitoring Combined with Temporal and Spatial Characteristics
In order to solve the problem that the traditional depth learning method for monitoring tool wear is tedious in extracting relevant features,and the incomplete extraction of data hidden information leads to low recognition accuracy,a multi-sensor tool wear monitoring model combined with spatio-temporal fea-tures is proposed.First,the waveform signals collected by different sensors are simply preprocessed as in-put,then the multi-channel 1D convolutional neural network(MC-1DCNN)is used to extract the spatial features of the input data,and then the bidirectional long short memory network(BiLSTM)is used to ex-tract the temporal features.Finally,the features are classified by the full connection layer and the Softmax layer.The simulation results show that the monitoring model has a simple process,high recognition accura-cy,and strong applicability.

tool wearspatiotemporal characteristicsmulti-sensorMC-1DCNNBiLSTM

曹梦龙、甄开起

展开 >

青岛科技大学自动化与电子工程学院,青岛 266061

刀具磨损 时空特征 多传感器 MC-1DCNN BiLSTM

山东省自然科学基金

ZR2020MF087

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 10