首页|基于小样本下改进ChaosNet的轴承故障诊断

基于小样本下改进ChaosNet的轴承故障诊断

扫码查看
为解决在训练样本不足条件下,轴承故障特征提取困难的问题,提出一种基于改进神经混沌学习(neurochaos learning +AdaBoost,NL-AdaBoost)的轴承故障诊断新方法.首先,对时域振动信号进行快速傅里叶变换(fast fourier transform,FFT)提取频域特征,拼接时频域信号获得一维特征样本;其次,输入信号产生对混沌GLS神经元的激励,形成ChaoFEX 特征,馈送至集成学习分类器(AdaBoost);随后,选取轴承故障特征样本,对样本集做k折交叉验证,获得模型最优超参数值,将其应用于测试集进行模型分类能力验证;最后,在小样本对比实验中,与 4 种常见深度学习算法比较模型的macro F1-score.实验结果证明,在低训练样本条件下,NL-AdaBoost模型具有良好的准确性和泛化能力.
Research on Intelligent Diagnosis of Bearing Faults Based on Improved ChaosNet with Small Samples
A new method of bearing fault diagnosis based on improved neurochaos learning(neurochaos learning +AdaBoost,NL-AdaBoost)is proposed.First,the fast fourier transform(FFT)of the time-domain vibration signal is performed to extract the frequency-domain features,and the one-dimensional feature sam-ples are obtained by splicing the time-frequency-domain signals;then,the input signal generates excitation to the chaotic GLS neurons to form ChaoFEX features,which are fed to the integrated learning classifier(Ada-Boost);subsequently,the bearing fault feature samples,and do k-fold cross-validation on the sample set to obtain the optimal hyperparameter values of the model,which are applied to the test set for model classifica-tion capability validation;finally,in a small-sample comparison experiment,the macro F1-score of the model is compared with four common deep learning algorithms.The experimental results demonstrate that under the low training sample condition,NL-AdaBoost,the model has good accuracy and generalization ability.

small sample trainingneural chaos learningrolling bearingfault diagnosis

李天昊、李志星、王衍学

展开 >

北京建筑大学 机电与车辆工程学院,北京 100044

北京建筑大学 城市轨道交通车辆服役性能保障重点实验室,北京 100044

小样本训练 神经混沌学习 滚动轴承 故障诊断

国家自然科学基金国家自然科学基金青年基金北京建筑大学青年教师科研能力提升计划课题

5187503251805275X21053

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 1
  • 3