首页|基于ISSA和IA?的AGV集成作业调度及其路径规划

基于ISSA和IA?的AGV集成作业调度及其路径规划

扫码查看
针对单一算法在求解车间调度和路径问题时最优性和多样性方面的缺陷,提出了优化飞鼠搜索算法ISSA(improved squirrel search algorithm)和优化A∗算法并建立集成作业调度和AGV路径规划的双层模型.首先,采用贪婪策略融合飞鼠搜索算法建立考虑能耗的AGV集成作业调度上层模型;其次,将安全距离因子引入A∗算法,构建AGV路径规划下层模型,并通过梯度下降法进行路径平滑;进而,运用6 个测试函数和kacem实例验证ISSA的寻优能力,结果表明ISSA的其收敛速度较快,运行效率较高,且不容易陷入局部最优;最后,基于栅格法建模进行对比仿真实验,IA∗比A∗算法拐点数量降低了22%,同时节约了21%的行驶时间,ISSA和IA∗均得到了良好的验证.结果表明,ISSA和IA∗能够更有效求解AGV集成作业调度及其路径规划问题.
Research on AGV Integrated Job Scheduling and its Path Planning Based on ISSA and IA
In order to solve the defects of a single algorithm in terms of optimality and diversity in solving job-shop scheduling and routing problems,this paper proposes a improved squirrel search algorithm(ISSA)and an optimal A∗algorithm.Meanwhile,a two-layer model integrating job scheduling and AGV path plan-ning has been established.Firstly,an upper layer model of integrated AGV job scheduling considering energy consumption is established based on greedy strategy and flying squirrel search algorithm.Secondly,the safe distance factor is introduced into A∗algorithm to construct the lower layer model of AGV path planning,and the gradient descent method is used to smooth the path.Then,six test functions and kacem examples are used to verify ISSA's optimization ability.The results show that ISSA's convergence speed is fast,the operation ef-ficiency is high,and it is not easy to fall into the local optimal.Finally,path simulation and comparison exper-iments based on raster modelling show that IA∗reduces the number of inflection points by 22%and reduces the travel time by 21%compared with A∗algorithm.ISSA and IA∗are both well verified.The results show that ISSA and IA∗can solve AGV integrated job scheduling and path planning more effectively.

A∗algorithmsquirrel search algorithmAGV integrated job schedulingAGV path planninggreedy strategy

张天瑞、刘悦

展开 >

沈阳大学机械工程学院,沈阳 110044

A∗算法 飞鼠搜索算法 AGV集成作业调度 AGV路径规划 贪婪策略

国家自然科学基金资助项目工信部重大专项项目辽宁省自然科学基金

5207508820167551420180551001

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(2)
  • 9