首页|基于GWO-ELM算法与模糊控制的无标定视觉伺服研究

基于GWO-ELM算法与模糊控制的无标定视觉伺服研究

扫码查看
针对传统基于图像的视觉伺服系统运行速度慢,图像雅可比矩阵的求解受标定精度影响的问题,提出一种基于灰狼算法优化极限学习机(GWO-ELM)与模糊控制相结合的视觉伺服控制方法.该方法利用灰狼算法(GWO)优化ELM模型初始权重增加模型稳定性,估计图像雅可比矩阵伪逆预测机械臂末端运动速度,之后引入模糊控制(Fuzzy Control)设计视觉伺服控制器构建无标定视觉伺服控制系统,并进行上机实验.实验结果表明,Fuzzy Control-GWO-ELM-IBVS的运行效率相对于GWO-ELM-IBVS得到了提升,定位误差能控制在规定阈值,验证了提出的无标定视觉伺服控制系统的有效性.
Research on Uncalibrated Visual Servo Based on GWO-ELM Algorithm and Fuzzy Control
To address the problems of slow operation of traditional image-based visual servo system and the impact of calibration accuracy on the solution of image Jacobi matrix,this paper proposes a visual servo control method based on the combination of gray wolf optimized extreme learning machine(GWO-ELM)and fuzzy control.The method uses the gray wolf algorithm(GWO)to optimize the initial weights of the ELM model to increase the stability of the model,estimates the image Jacobi matrix pseudo-inverse to pre-dict the end motion speed of the robot arm,and then introduces the fuzzy control(Fuzzy Control)to design the visual servo controller to build a calibration-free visual servo control system and conducts the experi-ments on the machine.The experimental results show that the operating efficiency of Fuzzy Control-GWO-ELM-IBVS is improved compared with that of GWO-ELM-IBVS,positioning errors can be controlled with-in specified thresholds,which verifies the effectiveness of the calibration-free visual servo control system proposed in this thesis.

image Jacobi matrixgray wolf algorithm optimized extreme learning machinefuzzy control

卢浩文、肖曙红、林耿聪、招子安

展开 >

广东工业大学机电工程学院,广州 511400

佛山智能装备技术研究院,佛山 528000

图像雅可比矩阵 灰狼算法优化极限学习机 模糊控制

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(3)
  • 11