首页|基于改进YOLOv5 算法的纸袋缺陷检测

基于改进YOLOv5 算法的纸袋缺陷检测

扫码查看
为了提高纸袋生产企业在制造过程中对纸袋手把或底部缺陷的检测精度,提出了一种基于改进YOLOv5 算法的纸袋缺陷检测方法.改进算法为了提高网络定位能力,增强网络的特征学习表达能力,引入了坐标注意力机制,接着引入EIoU损失函数对原始损失函数进行改进,以此来改善原始网络损失函数纵横比的合理性,提升回归精度,最后引入一种具有类似跨阶段局部结构的简化空间金字塔池化结构,减少冗余信息处理,提升网络检测性能.实验结果表明,改进算法的平均精度平均值mAP@.5 为87.3%,mAP@.5∶.95 为56.8%,与YOLOv5 算法相比mAP@.5 提升了1.6%,mAP@.5∶.95 提升了0.9%,在纸袋缺陷检测上有更优越的表现.
Research on Paper Bag Defects Detection Based on Improved YOLOv5 Algorithm
In order to improve the detection precision of paper bag manufacturers on the handle or bottom de-fects,a paper bag defects detection method based on the improved YOLOv5 algorithm was proposed.In order to improve the network positioning ability and enhance the feature learning and expression ability of the net-work,the Coordinate Attention was introduced,and then the EIoU loss function was introduced to improve the loss function,so as to improve the rationality of the aspect ratio of the original network loss function to im-prove the regression precision,and a simplified spatial pyramid pooling structure with CSP-like structure was introduced to reduce redundant information processing and improve the detection performance.Experimental results show that mAP@.5 and mAP@.5∶.95 of the improved algorithm are 87.3%and 56.8%,respective-ly.Compared with the YOLOv5 algorithm,mAP@.5 and mAP@.5∶.95 of the improved algorithm are in-creased by 1.6%and 0.9%respectively,showing better performance in the detection of paper bag defects.

paper bag defectsattentionloss functionspatial pyramid poolingimproved algorithm

杨萌、张爱军、潘文松

展开 >

南京理工大学机械工程学院,南京 210094

杭州康代思锐生物科技有限公司,杭州 311199

纸袋缺陷 注意力 损失函数 空间金字塔池化 改进算法

江苏省研究生科研与实践创新计划

SJCX22_0103

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(3)
  • 12