首页|基于蒸馏学习的滚动轴承异常诊断方法

基于蒸馏学习的滚动轴承异常诊断方法

扫码查看
针对航空发动机滚动轴承异常难以诊断的问题,提出了一种基于蒸馏学习的轴承智能诊断方法.首先,为提高计算效率,采用经过压缩后的vision transformer(ViT)作为蒸馏学习的主干特征提取网络;其次,采用滚动轴承振动试验台数据完成蒸馏学习中教师网络的预训练;在蒸馏学习模型的训练过程中,为充分利用教师网络的知识,采用了特征知识约束的损失函数,且利用了频谱变换的数据预处理方法,用于提高模型的诊断精度;最后,在某型多台航空发动机滚动轴承数据上对所提模型进行了充分的对比验证.结果表明,所提方法能够准确地实现滚动轴承运行状态的诊断,且诊断精度能够达到96%以上,充分表明了所提方法具有很高的实用价值.
Fault Anomaly Detection Method of Rolling Bearing Based on Distillation Learning
Aiming at the problem that it is difficult to diagnose the fault of aero-engine rolling bearing,an intelligent diagnosis method of bearing based on distillation learning is proposed.Firstly,in order to improve the computational efficiency,the compressed vision transformer(ViT)is used as the backbone feature ex-traction network for distillation learning.Secondly,the data of rolling bearing vibration test bench is used to complete the pre-training of teacher network in distillation learning.in the training process of the distillation learning model,in order to make full use of the knowledge of the teacher network,the loss function of the feature knowledge constraint is adopted,and the data preprocessing method of the spectrum transformation is used to improve the diagnostic accuracy of the model.Finally,the proposed model is fully compared and verified on the fault data of rolling bearings of multiple aero-engines.The results show that the proposed method can accurately realize the intelligent diagnosis of rolling bearing faults,and the diagnosis accuracy can reach more than 96%,which fully shows that the proposed method has high practical value.

aero-enginerolling bearingfault diagnosisdistillation learning

张春青、毕剑、高月

展开 >

中国航发沈阳黎明航空发动机有限责任公司,沈阳 110862

航空发动机 滚动轴承 智能诊断 蒸馏学习

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(3)
  • 18