首页|基于改进FNN-BP网络的 304 不锈钢薄板焊接质量推断模型

基于改进FNN-BP网络的 304 不锈钢薄板焊接质量推断模型

扫码查看
针对目前激光焊接领域的激光焊接参数智能设定的发展方向,智能焊接系统的焊接参数推定模块成为了热点研究对象.在分析了焊接工艺参数对焊接质量的影响之后,搭建了一种基于改进模糊专家系统和BP神经网络的激光焊接质量推断模型,该模型包括两部分内容,即基于焊接速度、焊接功率和离焦量的焊接质量模糊推断和基于预测值、板材厚度、峰值功率和占空比的BP修正神经网络.焊接质量模糊推断,首先基于已有人工经验进行焊接参数模糊化和焊接规则库建立,然后通过分析确定模糊推断类型,最后进行模糊推断输出焊接质量预测值;BP神经网络修正,基于板材厚度等参数对不同板材厚度下焊缝图像质量评分和平面度差值进行预测值修正,以获得更加准确的推断值.通过实验证明,该不锈钢薄板智能激光焊接系统具有一定的可行性和重要的工程意义.
Inference Model of 304 Stainless Steel Sheet Welding Quality Based on Improved FNN-BP Network
For the current development direction of the intelligent setting of laser welding parameters in the field of laser welding,the presumption module of welding parameters for intelligent welding systems has become a hot research object.After analyzing the influence of welding process parameters on welding quali-ty,a laser welding quality inference model based on an improved fuzzy expert system and BP neural net-work is built,which consists of two parts,namely a fuzzy inference of welding quality based on welding speed,welding power and out-of-focus amount and a BP modified neural network based on predicted val-ues,plate thickness,peak power,and duty cycle.The fuzzy inference of welding quality is firstly based on the existing manual experience to fuzzify the welding parameters and establish the welding rule base,then the fuzzy inference type is determined through analysis,and finally the fuzzy inference output welding qual-ity prediction value;BP neural network correction,based on the plate thickness and other parameters for dif-ferent plate thickness under the weld image quality score and flatness difference to correct the prediction value,to obtain more accurate inference value.Through the experiments,the stainless steel sheet intelligent laser welding system proved to have certain feasibility and important engineering significance.

welding quality evaluationwelding parametersfuzzy expert systemBP neural network

文德沐、胡晓兵、张雪健、毛业兵、陈海军

展开 >

四川大学机械工程学院,成都 610065

四川大学宜宾园区,宜宾 644000

焊接质量评价 焊接参数 模糊专家系统 BP神经网络

四川大学-宜宾校市合作项目

2020CDYB-3

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(3)
  • 15