首页|基于多策略改进海鸥算法求解机器人路径规划

基于多策略改进海鸥算法求解机器人路径规划

扫码查看
针对海鸥优化(SOA)算法在进行机器人路径规划时,存在求解效率慢,局部停滞和寻优精度低等问题,提出了一种多策略改进的海鸥优化(MSOA)算法.首先,该算法引入Circle混沌映射对种群进行初始化,保证了寻优效率;其次,提出了多方向翻筋斗和翻筋斗式跳跃螺旋搜索策略,分别嵌入到算法的迁徙行为和捕食行为中,提高了算法的寻优能力;最后,引入了混合波动非线性碰撞控制因子,能够动态地权衡了算法的局部搜索和全局开发能力.实验结果表明,MSOA算法在测试函数和路径规划上的性能均优于其他算法,对机器人路径规划问题,所提出的算法能够快速准确地避开障碍物,规划的路径长度最小,具有较好的优越性、可行性和稳定性,适用于求解移动机器人路径规划问题.
Multi-Strategy Improved Seagull Optimization Algorithm for Solving Robot Path Planning
To solve the problems of slow solving efficiency,local stagnation and low searching accuracy in the path planning of mobile music robot,a multi-strategy improved seagull optimization algorithm(MSOA)was proposed.Firstly,the algorithm introduced the Circle chaotic mapping to initialize the population and en-sured the optimization efficiency.Secondly,the multi-direction somersault and somersault jump spiral search strategies are proposed,which are embedded into the migration behavior and predation behavior of the algo-rithm respectively,to improve the algorithm's optimization ability.Finally,the hybrid wave nonlinear collision control factor is introduced to dynamically balance the local search and global development capabilities of the algorithm.Experimental results show that MSOA algorithm is superior to other algorithms on test function and path planning problem.For the path planning problem of a robot,the proposed algorithm is suitable to solve the path planning problem of a mobile robot due to its superior performance,feasibility and stability,its ability to quickly and accurately avoid obstacles in complex environments,and its minimal path length.

path planningseagull optimization algorithmmulti-direction somersaultjump spiralhybrid wave control factor

李婕、尚文祥、胡永涛

展开 >

河南工学院电气工程与自动化学院 新乡 453003

河南工学院新乡市机械设备运行状态智能监测工程技术研究中心,新乡 453003

路径规划 海鸥优化算法 多方向翻筋斗 跳跃螺旋 混合波动控制因子

河南省科技攻关项目河南省科技攻关项目河南省科技攻关项目

242102240040222102210087222102220102

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 29