首页|基于改进YOLOv5s的玻璃盖板划伤检测算法

基于改进YOLOv5s的玻璃盖板划伤检测算法

扫码查看
针对当前玻璃盖板检测速度较慢、精确率较低的问题,提出一种基于YOLOv5s算法的玻璃盖板划伤检测改进模型.首先,借鉴ResNeXt结构和大核注意力(large kernel attention,LKA)结构改进原C3 模块,增强网络对于特征的检测和提取能力;其次,向网络中引入BiFPN模块,提高网络的特征融合能力和小目标检测能力;最后,使用EIOU损失函数替换原网络中的CIOU损失函数,提高锚框生成的准确性和模型收敛速度.结果表明,改进后模型,精确率达到 98.2%,召回率达到98.4%,实现玻璃盖板划伤的高效检测.
Glass Cover Screen Scratch Detection Algorithm Based on Improved YOLOv5s
In order to realize the efficient automatic detection of glass cover screen,aiming at the problem of slow speed and low accuracy of manual detection,an improved model of scratch detection of glass cover screen based on YOLOv5s algorithm is proposed.Firstly,the original C3 module is improved by referring to the ResNeXt structure and the large kernel attention(LKA)structure to enhance the network's ability to detect and extract features.Secondly,the BiFPN module is introduced into the network to improve the fea-ture fusion ability and small target detection ability.Finally,the EIOU loss function is used to replace the CIOU loss function to improve the accuracy of anchor generation and the convergence speed.The results show that the accuracy rate of the improved model reaches 98.2%,and the recall rate reaches 98.4%,which realizes the high-precision detection of glass cover screen scratches.

scratch detectionYOLOv5sResNeXtlarge kerneal attentionintelligent manufacturing

李虎、胡晓兵、陈海军、毛业兵、章程军、李航

展开 >

四川大学机械工程学院,成都 610065

四川大学宜宾产业技术研究院,宜宾 644000

划伤检测 YOLOv5s ResNeXt 大核注意力 智能制造

川大-宜宾校市合作项目四川省科技计划重点研发项目四川大学-遂宁校市合作专项资金项目

2020CDYB-32022YFG00722020CDSN-04

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 15