首页|基于FIR-Stacking的刀具磨损预测

基于FIR-Stacking的刀具磨损预测

扫码查看
针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法.首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征,并对同一信号的多源信号特征进行拼接,经Pearson相关系数筛选保留相关系数大于0.2 的特征;最后,以LightGBM、支持向量回归(support vector regression,SVR)、多层感知机(multilayer perceptron,MLP)作为基模型,Lasso作为元模型,构建Stacking集成模型进行刀具磨损预测.使用铣削加工数据集进行验证,结果表明该方法可有效提高预测准确性.
Tool Wear Prediction Based on FIR-Stacking
To address the issues of noisy sensor signals during milling and inadequate performance of single traditional machine learning models,a method for milling tool wear prediction based on adaptive FIR filte-ring and Stacking ensemble model is proposed.Firstly,an adaptive FIR filter is applied to remove noise,and statistical features in the time domain,frequency domain,and time-frequency domain are calculated as sig-nal characteristics.Multiple source signal features of the same signal are concatenated,and features with Pearson correlation coefficients greater than 0.2 are selected.Finally,the Stacking ensemble model is con-structed using LightGBM,support vector regression(SVR),multilayer perceptron(MLP)as base models,and Lasso as the meta-model for predicting tool wear.The proposed method is validated using a milling dataset,demonstrating its effectiveness in improving prediction accuracy.

tool wear predictionFIR filterStacking ensemble modelmachine learning

李备备、陈春晓、郑飂默、张强

展开 >

中国科学院沈阳计算技术研究所,沈阳 110168

沈阳中科数控技术股份有限公司,沈阳 110168

中国科学院大学,北京 100049

刀具磨损预测 FIR滤波器 Stacking集成模型 机器学习

中国博士后科学基金面上项目沈阳市中青年科技创新人才支持计划项目沈阳市中青年科技创新人才支持计划项目烟台市科技创新发展计划重点项目山东省科技型中小企业创新能力提升工程项目国家科技重大专项项目国家科技重大专项项目

2021M703394RC201475RC2104872022JCYJ0362023TSGC08532019ZX040140012023YTKXGH001

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 14