首页|基于多策略人工蜂鸟优化PF的SLAM研究

基于多策略人工蜂鸟优化PF的SLAM研究

扫码查看
针对粒子滤波算法(PF)重采样导致粒子贫乏及需增加粒子数以提高估计精度的问题,提出一种基于多策略人工蜂鸟算法优化的粒子重组粒子滤波算法.首先,引入中垂线算法提高人工蜂鸟算法收敛速度,通过其智能觅食机制,使得最优粒子引导粒子集向高似然区域移动,以此提高估计精度;其次,实时计算最优粒子附近的粒子密度,当密度大于设置的区域搜索阈值时引入Levy飞行策略以扩大搜索空间,当其大于最大密度值时,自适应调整迭代次数;最后,重采样阶段将筛选后保留的粒子与剩余粒子重新组合成新的粒子,以此增加粒子多样性.通过仿真实验检验改进算法在SLAM中的性能,结果表明该算法较其他3 种算法相比,其位姿与路标估计精度更高且鲁棒性更佳.
Research on SLAM Accuracy of Multi-Strategy Artificial Hummingbird Algorithm Optimized Particle Filter
Aiming at the problem that the resampling of particle filter algorithm leads to particle scarcity and the need to increase the number of particles to improve the estimation accuracy,A particle recombina-tion particle filter algorithm based on multi-strategy artificial hummingbird algorithm optimization is pro-posed.Firstly,the midperpendicular algorithm improves the convergence speed of the artificial hummingbird algorithm.Through its intelligent foraging mechanism,the optimal particle guides the particle set to move towards the high likelihood region,thereby improving estimation accuracy;Secondly,the particle density near the optimal particle is calculated in real-time.When the density exceeds the set regional searching threshold,a Levy flight strategy is introduced to expand the search space.When it exceeds the maximum density value,the iteration number is adaptively adjusted;Finally,in the resampling stage,the retained parti-cles after screening are recombined with the remaining particles to form new particles,thereby increasing particle diversity.The performance of the improved algorithm in SLAM was verified through simulation ex-periments,and the results showed that compared with the other three algorithms,the algorithm has higher accuracy and better robustness in pose and landmark estimation.

particle filterartificial hummingbird algorithmadaptive adjustmentmidperpendicular algo-rithmLevy flightsimultaneous localization and mapping(SLAM)

蔡艳、杨光永、樊康生、徐天奇

展开 >

云南民族大学电气信息工程学院,昆明 650000

粒子滤波 人工蜂鸟算法 中垂线算法 自适应调整 Levy飞行 SLAM

国家自然科学基金项目国家自然科学基金项目

6176104961261022

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 19