首页|基于PointNet ++的焊装夹具零件识别

基于PointNet ++的焊装夹具零件识别

扫码查看
焊装夹具是汽车白车身焊接生产线中重要的组成部分,有效的管理和归纳焊装夹具零件设计数模能够显著提高设计效率.将原始设计数模离散为点云,利用点云数据和PointNet ++深度学习网络探讨了一种焊装夹具零件智能分类方法,并对比各模型的分类精度,选取运行效率和精度最高的单尺度分组(SSG)模型完成焊装夹具零件的分类.训练结果表明,该方法在验证集上的准确率为97.5%,型块、连接块、定位销、销座、支座的验证集类内准确率分别为92.5%、97.5%、100%、97.5%和100%.这些结果表明该方法具有较高的识别精度,能够满足焊装夹具零件分类的精度要求.
PointNet ++ Based Welding Fixture Parts Identification
Welding fixture is an important part in the welding production line of automobile body in white.Effective management and induction of welding fixture parts design modulus can significantly improve the design efficiency.In this paper,the original design model is discretized into a point cloud,and an intelligent classification method of welding fixture parts is discussed by using the point cloud data and Pointnet ++ deep learning network.By comparing the classification accuracy of each model,the single scale grouping(SSG)model with the highest operating efficiency and accuracy is selected to complete the classification of welding fixture parts.The training results show that the accuracy of the proposed method on the verifica-tion set is 97.5%,and the accuracy of the verification set of the type block,the connection block,the posi-tioning pin,the pin seat and the support are 92.5%,97.5%,100%,97.5%and 100%,respectively.These results show that the proposed method has high recognition accuracy and can meet the accuracy require-ments of welding fixture parts classification.

welding fixturethree-dimensional point cloudclassificationPointNet ++

徐华、陶长城、乐鑫淼

展开 >

湖北汽车工业学院材料科学与工程学院,十堰 442000

焊装夹具 三维点云 分类 PointNet ++

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 14