首页|基于VSD-YOLOv5s的轻量化注塑齿轮缺陷检测

基于VSD-YOLOv5s的轻量化注塑齿轮缺陷检测

扫码查看
针对注塑齿轮加工过程中在线缺陷检测存在的识别速度较慢、识别精度较低等问题,提出了一种基于ShuffleNetV2 主干网络的改进YOLOv5s网络模型.在YOLOv5s网络模型的基础上将原来的C3 主干网络结构替换为轻量化ShuffleNetV2 结构,降低模型参数量和尺寸,提升识别速度.引入SE注意力机制,并通过DIOU-NMS方法去除冗余框,减少错误抑制,提高识别精度.实验结果表明:相比于原模型,改进的模型识别准确率提升了0.9%,平均识别精度提升了1.7%,识别速度提升了5 fps,满足注塑齿轮表面缺陷在线识别的速度以及精度要求.
Defect Detection of Lightweight Injection Molding Gear Based on VSD-YOLOv5s
An improved YOLOv5s network model based on ShuffleNetV2 backbone network was proposed after analyzing the problems of slow identification speed and low accuracy of online defect detection in in-jection molding gear processing.On the basis of YOLOv5s network model,the original C3 backbone net-work structure is replaced by lightweight ShuffleNetV2 structure,reducing the number and size of model parameters and improving the recognition speed.The SE attention mechanism is introduced,and the DIOU-NMS method is used to remove redundant boxes,reduce error suppression,and improve recognition accura-cy.The experimental results show that compared with the original model,the recognition accuracy of the improved model is increased by 0.9%,the average recognition accuracy is increased by 1.7%,and the rec-ognition speed is increased by 5 fps,which can meet the speed and accuracy requirements of online recogni-tion of injection gear surface defects.

ShuffleNetV2YOLOv5sinjection molding geardefect detection

申飞、周敏、黄周林、李鑫炎、张美洲

展开 >

武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081

武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081

武汉科技大学精密制造研究院,武汉 430081

ShuffleNetV2 YOLOv5s 注塑齿轮 缺陷检测

国家自然科学基金项目武汉科技大学研究生创新创业项目

51975431JCX2021048

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(4)
  • 15