首页|基于改进蝙蝠算法的最小区域法圆度误差评定

基于改进蝙蝠算法的最小区域法圆度误差评定

扫码查看
圆度是轴类机械产品几何精度评价的核心指标之一,其直接影响到产品的性能和寿命,准确、快速、规范的进行零件圆度误差评定一直是计量领域研究的热点.因此,提出了一种基于改进蝙蝠算法的最小区域法圆度误差评定方法,该方法利用蝙蝠算法的种群寻优能力,结合最小区域法对圆度误差模型中的目标圆心进行快速寻优,进而计算求解出圆度误差值.改进的蝙蝠算法通过增加混沌惯性权重、自适应参数等方法来有效避免算法在圆度误差评定中陷入局部最优,并改善评定准确性和稳定性.通过对实测数据进行实验验证和分析对比,结果表明提出的方法在圆度误差评定中寻优速度明显优于遗传算法,评定精度和稳定性较最小二乘法有较大提升,验证了该方法在最小区域法圆度误差评定应用中的可行性.
Roundness Error Evaluation of Minimum Zone Method Based on Improved Bat Algorithm
Roundness is one of the core indexes for the evaluation of geometric accuracy of shaft-type me-chanical products,which directly affects the performance and life of the products,and accurate,fast and standardised roundness error assessment of parts has always been a hotspot of research in the field of me-trology.Therefore,this paper proposes a roundness error evaluation method based on the improved bat algo-rithm with minimum region method,which makes use of the bat algorithm's population optimisation ability,combines with the minimum region method to quickly find the optimisation of the target circle center in the roundness error model,and then calculates and solves the roundness error value.The improved bat algo-rithm increases the chaotic inertia weights and adaptive parameters to avoid the algorithm from falling into local optimality in the roundness error assessment and improve the accuracy and stability of the assessment.Through the experimental verification and analysis and comparison of the measured data,the results show that the proposed method is significantly better than the genetic algorithm in circularity error assessment,and the assessment accuracy and stability are greatly improved compared with that of the least squares method,which verifies the feasibility of the method in the application of the minimum region method for circularity error assessment.

roundness errorbat optimization algorithmchaotic inertia weightadaptive parameters

何青泽、郑鹏、吕星辰、李季村、李岩

展开 >

郑州大学机械与动力工程学院,郑州 450001

圆度误差 蝙蝠优化算法 混沌惯性权重 自适应参数

国家自然科学基金

51775515

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(5)
  • 12