首页|基于改进YOLOv5的金属表面缺陷分割

基于改进YOLOv5的金属表面缺陷分割

扫码查看
针对当前工业图像表面缺陷检测算法定位精度差等问题,提出了一种基于改进YOLOv5 缺陷分割算法.首先,在骨干网络的前两层使用ODConv替换原有的Conv模块,使图片的下采样信息更好地保存;其次,使用Meta-ACON激活函数替代SiLU激活函数,能够通过学习自动使用性能更好地激活函数来提高特征提取能力;然后,在下层特征提取部分以及Neck层引入SimAM注意力机制,增强特征提取能力;最后,引入Alpha-IoU作为损失函数,提升了边界框回归的精确度.实验结果表明,改进的分割模型检测精度(map)为86.7%,比原YOLOv5 网络提升了20.1%,比最新的检测模型YOLOv8高出2%.改进的模型不仅具有较高的检测精度,而且分割检测算法可以更加精确定位缺陷位置.
Metal Surface Defect Segmentation Algorithm Based on Improved YOLOv5
Aiming at the problem of poor positioning accuracy of the current industrial image surface defect detection algorithm,a defect segmentation algorithm based on improved YOLOv5 is proposed.Firstly,ODConv is used to replace the original Conv module in the first two layers of the backbone network,so that the downsampling information of the picture can be better preserved;Secondly,using Meta-ACON activa-tion function instead of SiLU activation function can improve the feature extraction ability by learning to automatically use activation function with better performance;Thirdly,SimAM attention mechanism is intro-duced into the lower feature extraction part and Neck layer to enhance the feature extraction ability;Finally,Alpha-IoU is introduced as the loss function,which improves the accuracy of bounding box regression.The experimental results show that the detection accuracy(map)of the improved segmentation model is 86.7%,which is 20.1%higher than the original YOLOv5 network and 2%higher than the latest detection model YOLOv8.Therefore,the improved model in this paper not only has high detection accuracy,but also the segmentation detection algorithm can locate the defect position more accurately.

defect segmentationattention mechanismAlpha-IoUYOLOv5

王九鑫、吴鑫、杜雨蓉、赵明虎、苏耀恒

展开 >

西安工程大学理学院,西安 710048

西南交通大学数学学院,成都 611756

缺陷分割 注意力机制 Alpha-IoU YOLOv5

西安市青年人才托举计划

959202313010

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(5)
  • 4