首页|基于YOLOv5-GCE的钢材表面缺陷检测

基于YOLOv5-GCE的钢材表面缺陷检测

扫码查看
针对传统钢材表面小尺寸缺陷检测精度较低,且容易出现漏检和误检等问题,提出了一种改进的钢材表面缺陷检测算法YOLOv5-GCE.首先,将轻量级GhostNet模块应用于YOLOv5 的主干网络中,以替换CSP1 中的残差模块,减少网络模型的参数量和计算复杂度;其次,引入CA注意力机制,使得网络更加关注小目标的关键特征,提高其特征提取和定位能力,进而提升小目标的检测精度;最后,采用EIoU损失函数替代传统的GIoU损失函数,提高模型的收敛速度和回归精度.实验结果显示,YOLOv5-GCE算法在NEU-DET数据集上的mAP值为81.4%,相比于原YOLOv5 算法提高了4.5%,检测速度达到了40 fps,并且该算法模型体积较小,可适用于移动端目标检测应用场景.
Steel Surface Defect Detection Based on YOLOv5-GCE
Aiming at the problem of low accuracy,easy omission and false detection in traditional small-size defect detection,an improved YOLOv5-GCE method is proposed for detecting surface defects of steel.Firstly,the GhostNet modular is exploited in YOLOv5′s backbone network to replace the residual modular in CSP1 in order to reduce the amount of modelar factors and mathematical complexity.Secondly,the CA attention mechanism is introduced to enable the network to prioritize the key features relating to small tar-gets,thus enhancing its feature extraction and positioning capabilities and improving the accuracy of small target detection.Finally,the traditional GIoU loss function is replaced by EIoU loss function,which im-proves the convergence speed and regression precision of the model.The experimental results show that the mAP value of the YOLOV5-GCE algorithm on the NEU-DET dataset is 81.4%,which is 4.5%higher than that of the original YOLOv5 algorithm,and the detection speed reaches 40 fps.Moreover,the model size of the algorithm is small which can be applied to the application scenarios of mobile target detection.

defect detectionYOLOv5GhostNet moduleattention mechanismloss function

李超凡、刘凌云、刘翰林

展开 >

湖北汽车工业学院电气与信息工程学院,十堰 442002

缺陷检测 YOLOv5 GhostNet模块 注意力机制 损失函数

国家自然科学基金湖北省自然科学基金

515752112016CFB401

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(5)
  • 1
  • 7