首页|基于改进RRT的机器人路径规划算法

基于改进RRT的机器人路径规划算法

扫码查看
随机采样的RRT算法在非完整约束的规划问题中被广泛使用,但RRT方法存在收敛速度慢、随机性强、存在大量的冗余节点的问题,同时难以快速找到路径.针对以上问题提出一种改进的RRT算法.在提出一步记忆机制的基础上,算法基于历史拓展结果进行随机拓展或者向目标拓展;同时,将随机树拓展过程中因碰撞而拓展失败的节点进行随机旋转处理,以使随机树能够成功拓展;最后,采用双树生长策略,从目标点和起点同时生长随机树,加快收敛速度.仿真结果表明,相较于RRT,改进方法计算时间缩短18.1%~88.1%,随机树节点减少 24.0%~90.6%.在真实环境下的实验对比验证了改进算法在路径长度、收敛时间等方面的优势.
Robot Path Planning Algorithm Based on Improved RRT
The RRT algorithm based on random sampling is widely used in non-holonomic constrained pro-gramming problems.However,the RRT method has problems such as slow convergence speed,strong ran-domness,a large number of redundant nodes,and difficulty in quickly finding path.In response to the above issues,proposed an improved RRT algorithm.This method first adopts a strategy of directly expanding to the target,and then randomly expanding or expanding to the target based on the expansion results.At the same time,nodes that failed to expand due to collisions are randomly rotated to enable them to successfully expand.Finally,a bi-directional growth strategy is adopted to accelerate convergence speed.The simulation verification results show that the convergence speed of the proposed method is better than that of the RRT method,with a calculation time reduction of 18.1%~88.1%,and a 24.0%~90.6%reduction in tree nodes.

path planningRRTrandom samplingtarget guidance

邓益昭、涂海燕、宋明俊

展开 >

四川大学电气工程学院,成都 610041

路径规划 快速随机生成树 随机采样 目标引导

四川省科技计划

2022YFS0032

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(6)