首页|轴承套圈电磁无心磨削成圆误差解析和仿真

轴承套圈电磁无心磨削成圆误差解析和仿真

扫码查看
针对电磁无心磨削成圆过程和磨床加工性能的高精度预测和分析,研究了轴承套圈电磁无心磨削成圆误差的生成机制.建立以几何条件、加工参数和机床刚度为参数的,包含几何误差、静态误差和动态误差的解析方程,通过利用成圆误差方程对轴承套圈表面圆度误差进行迭代,可以在时域范围内对轴承套圈表面圆度误差的再生过程进行数值仿真,提供了一种预测轴承套圈表面圆度误差变化的仿真模型,为有效预测磨削性能和轴承套圈成圆过程提供了可靠的分析手段.通过同步仿真与实验条件参数,得到的仿真结果与实验结果的相对误差为8.04%.结果显示,所建立的综合模型可以完成成圆过程的分析并预测工件最终轮廓.
The Outer Surface Shoe Centerless Grinding into Circle Analysis and Simulation
The generation mechanism of the roundness error of shoe centerless grinding of bearing rings is investigated for the high-precision prediction and analysis of the roundness formation process of shoe cen-terless grinding and the machining performance of the grinding machine.The analytical equations containing geometrical,static and dynamic errors are established with geometrical conditions,machining parameters and machine rigidity as parameters,and the regeneration process of the surface roundness error of bearing rings can be numerically simulated in the time domain by iterating the surface roundness error of bearing rings with the roundness error equations,thus providing a simulation model for predicting the changes of the surface roundness error of bearing rings,and providing a good model for effectively predicting the grinding performance and the roundness process of bearing rings.The simulation model provides a reliable analytical tool to predict the grinding performance and the rounding process of bearing rings.By synchronizing the simulation and experimental parameters,the relative error between the simulation results and experimental results is 8.04%.The results show that the established comprehensive model can complete the analysis of the rounding process and predict the final contour of the workpiece.

shoe centerless grindingroundness errorcircularizing mechanismnumerical simulation

韩其华、赵华东、张瑞

展开 >

郑州大学 机械与动力工程学院,郑州 450001

郑州大学 河南省智能制造研究院,郑州 450001

电磁无心磨削 圆度误差 成圆机制 数值仿真

工信部高质量发展专项

TC220H05V

2024

组合机床与自动化加工技术
大连组合机床研究所 中国机械工程学会生产工程分会

组合机床与自动化加工技术

CSTPCD北大核心
影响因子:0.671
ISSN:1001-2265
年,卷(期):2024.(6)